

Micriµm
Empowering Embedded Systems

µC/FS
V4.06.01

Migration Guide

www.Micrium.com

 2

Disclaimer
Specifications written in this manual are believed to be accurate, but are not
guaranteed to be entirely free of error. Specifications in this manual may be changed
for functional or performance improvements without notice. Please make sure your
manual is the latest edition. While the information herein is assumed to be accurate,
Micrium assumes no responsibility for any errors or omissions and makes no
warranties. Micrium specifically disclaims any implied warranty of fitness for a
particular purpose.

Copyright notice
You may not extract portions of this manual or modify the PDF file in any way
without the prior written permission of Micrium. The software described in this
document is furnished under a license and may only be used or copied in accordance
with the terms of such a license.

© 2008-2013 Micriµm, Weston, Florida 33327-1848, U.S.A.

Trademarks
Names mentioned in this manual may be trademarks of their respective companies.
Brand and product names are trademarks or registered trademarks of their
respective holders.

Registration
Please register the software via email. This way we can make sure you will receive
updates or notifications of updates as soon as they become available. For
registration please provide the following information:

• Your full name and the name of your supervisor
• Your company name
• Your job title
• Your email address and telephone number
• Company name and address
• Your company's main phone number
• Your company's web site address
• Name and version of the product

Please send this information to: licensing@micrium.com

Contact address

Micrium
949 Crestview Circle
Weston, FL 33327-1848
U.S.A.
Phone : +1 954 217 2036
FAX : +1 954 217 2037
WEB : www.micrium.com
Email : support@micrium.com

 3

Document versions
If you find any errors in this document, please inform us and we will make the
appropriate corrections for future releases.

Manual Version Date Description
V4.06.01 2013/07/10 Updated.
V4.06.00 2013/06/27 Updated.
V4.05.01 2012/09/10 Updated.
V4.05.00 2012/08/16 Updated.
V4.04.05 2012/06/12 Updated.
V4.04.04 2012/06/06 Updated.
V4.04.03 2012/05/10 Updated.
V4.04.01 2010/11/29 Updated.
V4.04 2010/11/11 Updated.
V4.03 2010/05/27 First version of document.

1

2

 4

3 μC/FS v4.06.00 to v4.06.01

The following is a comprehensive list of the modifications you must apply to your µC/FS projects to update
them to v4.06.01 from v4.06.00. The changes are easy to make, and updating your project should take a
short time.

1.01 New source code

µC/FS v4.06.01 is comprised of mostly bugfixes in various modules. The first step is to replace every file
of your project by the new ones.

4
1.02 API changes

No API changes have been made in µC/FS v4.06.01.

 5

5 µC/FS v4.05.03 to v4.06.00
6

The following is a comprehensive list of the modifications you must apply to your µC/FS projects to update
them to v4.06.00 from v4.05.03. The changes are easy to make, and updating your project should take a
short time.

1.01 New source code and features

The major feature of µC/FS v4.06.00 is the redesignof the journaling module. Other features include
support for dumping raw NAND images in the NAND driver along with bug fixes. The first step is to
replace every file of your project by the new ones.

1.02 API changes

- Due to a redesignof the journaling module, you must first make sure that any journaled volume
used through µC/FS V4.05.03 or earlier has been cleanly unmounted before upgrading to µC/FS
V4.06.00. The new journal format is incompatible with the old one and thus any existing old
format entry in the journal file would be lost.

- In the previous V4.05.03 release, the default value for the UB_CntMax field of the NAND
configuration structure (FS_NAND_DfltCfg) was changed from 10 to 3, causing FSDev_Open to
return with error code FS_ERR_DEV_INCOMPATIBLE_LOW_PARAMS on already low-
formatted NAND devices. The default value has been reduced to relax the RAM requirements of
the default configuration. Changing that value back to 10 on V4.05.03+ will allow previously low-
formatted NAND devices to be mounted. Another option would be low-format the NAND device.

If your project uses the fs_app..c/h template, it was impossible to change the UB_CntMax field
without directly modifying fs_app.c. In V4.06.00, a new hidden configuration #define has been
added: APP_CFG_FS_NAND_UB_CNT_MAX. This #define, if set, allows you to change the
value for UB_CntMax, which would allow you, by setting it to the value 10, to mount pre-
V4.05.03 devices without low-level reformating them.

- Some unneeded fields have been removed from core µC/FS structures like the FS_FILE,

FS_VOL, FS_DEV, FS_BUF, FS_NAND_DATA, etc. Those structures are not meant to be
directly read or modified from the applications, but you may have to adapt your application if you
were accessing them directly.

- The FS_CFG_BUILD configuration option in fs_cfg.h has been removed. µC/FS will always be

built as it was with FS_CFG_BUILD equal to FS_BUILD_FULL.

 6

7 µC/FS v4.05.00 to v4.05.01
8

The following is a comprehensive list of the modifications you must apply to your µC/FS projects to update
them to v4.05.01 from v4.05.00. The changes are easy to make, and updating your project should take a
short time.

1.01 New source code and features

µC/FS v4.05.01 is comprised of mostly bugfixes in various modules. The first step is to replace every file
of your project by the new ones.

1.02 API changes

Some changes were made to the NAND Driver generic controller BSP API and to the NAND static part
layer implementation configuration structure. The list below details the changes you need to make to
migrate your projects:

- The field NbrOfPgmPerPage has been renamed to NbrPgmPerPg in the
FS_NAND_PART_STATIC_CFG static part layer configuration structure. If you use the
fs_app.c/h application template, nothing needs to be changed, but if setting the field at runtime, the
assignment will need to be corrected.

- Every function in the NAND driver generic controller BSP API except Close(), ChipSelEn() and
ChipSelDis() requires the addition of a FS_ERR* error code pointer argument. Use that error code
pointer to return any error that need to be reported by the BSP. The Open() and WaitWhileBusy()
functions need to have their return types changed to void, the errors being now reported through
the new FS_ERR* argument.

 7

9 μC/FS v4.04.05 to v4.05.00

The following is a comprehensive list of the modifications you must apply to your µC/FS projects to update
them to v4.05.00 from v4.04.05. The changes are easy to make, and updating your project should take a
short time.

1.01 New source code and features

The major feature of µC/FS v4.05.00 is the release of a new NAND driver. Changes to the rest of the file
system is mostly bug fixes and minor features. It is important to update every files of uC/FS and make sure
that the required depencies are updated too.

1.02 API changes

No changes to the calling conventions of the API has been done in this release. However, a few error codes
were revised. A summary of these changes is presented in the following list.

- FS_DevDrvAdd() now returns FS_ERR_DEV_DRV_NONE_AVAIL instead of
FS_ERR_DEV_DRV_NO_TBL_POS_AVAIL when unable to add a driver when reaching the
configured limit.

- All functions that were found to return FS_ERR_NULL_PTR when given a NULL pointer as a
file name now return the more appropriate FS_ERR_NAME_NULL error code. This is only in
effect when argument checking is enabled.

- The error code returned by FSCache_Create() when given an invalid cache configuration is now
FS_ERR_INVALID_CFG instead of the unrelated FS_ERR_CACHE_INVALID_SEC_TYPE.

1.03 Multi-Cluster Writes and Reads

uC/FS is now able to perform reads and writes across clusters as one device access if possible. This has the
side effect of increasing the maximum transfer size of device access. Users who perform large file access
in their application should make sure that the BSPs are able to cope with the increased transfer size.

 8

10 μC/FS v4.04.04 to v4.04.05

The following is a comprehensive list of the modifications you must apply to your µC/FS projects to update
them to v4.04.05 from v4.04.04. The changes are easy to make, and updating your project should take a
short time.

1.01 New source code

µC/FS v4.04.04 is comprised of mostly bugfixes in various modules. The first step is to replace every file
of your project by the new ones.

11
1.01 API changes

No API changes have been made in µC/FS v4.04.05.

 9

12 μC/FS v4.04.03 to v4.04.04

The following is a comprehensive list of the modifications you must apply to your µC/FS projects to update
them to v4.04.04 from v4.04.03. The changes are easy to make, and updating your project should take a
short time.

1.01 New source code

µC/FS v4.04.04 is comprised of mostly bugfixes in various modules. The first step is to replace every file
of your project by the new ones.

1.02 API changes

No API changes have been made in µC/FS v4.04.04.

1.03 Device query

FSDev_Query will now returns valid data for the ‘Fixed’ and ‘State’ fields even if a devices is not
accessible. An approriate error is returned exactly as before if the device cannot be accessed. Existing
applications should not be impacted.

1.04 RAMDisk removable status

RAMDisk type of devices will now correctly identify themselves as fixed devices instead of removable.
Applications that relies on that information should be updated accordingly.

 10

μC/FS v4.04.02 to v4.04.03

The following is a comprehensive list of the modifications you must apply to your µC/FS projects to update
them to v4.04.03 from v4.04.02. The changes are easy to make, and updating your project should take a
short time.

1.01 New source code

µC/FS v4.04.03 include many improvements and changes in the source code from the last version. Many of
them improve either the reliability, the readability or the speed of µC/FS. To migrate to v4.04.01, the first
step is to replace every file of your project by the new ones.

1.02 Deprecated source files

The source files fs_pool.c and fs_pool.h are deprecated and should not be included any longer.

1.03 Optional master include file

A new master include file called fs_inc.h can optionally be used instead of including individual header
files. User wishing to port projects from µC/FS 4.04 may use it as a drop in replacement for fs.h. However,
the fs_api.h containing the defenition of the POSIX compliant API is not included in fs_inc.h.

1.04 Changes in fs_cfg.h

Two new configuration must be #defined in fs_cfg.h, FS_CFG_64_BITS_LBA_EN and
FS_CFG_BUF_ALIGN_OCTETS. The first one is used to enable support for 64 bit LBA existing
applications should generally set this to DEF_DISABLED to ensure compatibility. The second is used to
specify a minimum alignment in octets for the internal file system buffers. See the µC/FS user manual
appendix E, titled µC/FS configuration guide, for more details about these new configurations.

1.05 Change to the OS port API

The function FS_OS_WorkingDirSet() was modified to include an error return argument. Projects using a
custom OS port not provided Micriµm should update their port accordingly.

1.06 Change to the SD BSP API

Error return arguments were changed from FS_DEV_SD_CARD_ERR to FS_ERR to be more consistent
throughout µC/FS.

 11

μC/FS v4.04 to v4.04.01

The following is a comprehensive list of the modifications you must apply to your µC/FS projects to update
them to v4.04.01 from v4.04. The changes are easy to make, and updating your project should take a short
time.

1.01 New source code

µC/FS v4.04.01 include many improvements and changes in the source code from the last version. Many of
them improve either the reliability, the readability or the speed of µC/FS. To migrate to v4.04.01, the first
step is to replace every file of your project by the new ones.

1.02 Error codes redesigned

µC/FS v4.04.01 uses enums for the error codes. This is useful when debugging because most debuggers
will show the full name instead of a value. Also, fs_err.c is now deprecated and should be removed from
your project.

1.03 File inclusion changes

To improve readability and compatibility with third-party tools, the header files are not all included by a
master include file anymore. Instead of including fs.h solely, you will have to include appropriate headers,
depending on the API you wish to use (fs_file.h, fs_dir.h, fs_vol.h, fs_dev.h, etc.).

1.04 Changes in fs_cfg.h

You must now #define FS_CFG_BUILD, FS_TRACE_LEVEL and FS_TRACE in the file
fs_cfg.h. Refer to the template in the µC/FS archive for an example.

 12

13 μC/FS v4.03 to v4.04

The following is a comprehensive list of the modifications you must apply to your µC/FS projects to update
them to v4.04 from v4.03. The changes are easy to make, and updating your project should take a short
time.

1.01 New source code

µC/FS v4.04 include many improvements and changes in the source code from the last version. Many of
them improve either the reliability, the readability or the speed of µC/FS. To migrate to v4.04, the first step
is to replace every file of your project by the new ones.

1.02 About µC/Clk

µC/FS v4.04 now includes µC/Clk. µC/Clk μC/Clk is a module that implements a Y2K-compliant
clock/calendar. Your application can obtain timestamps in three formats: μC/Clk, UNIX, NTP. μC/Clk
purpose is to unify the time/date management across every Micrium products. For example, you could set
the timestamp of a file from the time information obtained via a SNTP server (using µC/TCPIP with the
optional SNTP module). Note that you can still use a hardware clock (i.e. RTC) or the time from any
RTOS.

For v4.04, the use of µC/Clk is mandatory. The fs_time module is no longer supported.

Below are the steps you must follow to use µC/Clk. Pleaser refer to the µC/Clk user manual for further
informations.

1. Remove files fs_time.c and fs_time.h from your project
2. Add clk.c and clk.h to your project
3. Add the path for clk.h to your list of include directories
4. Add the file clk_cfg.h to your project (use the template in the µC/Clk distribution)

• Set CLK_CFG_EXT_EN appropriately in the file clk_cfg.h If CLK_CFG_EXT_EN is
DEF_ENABLED, you must define your own time management functions
(Clk_ExtTS_Init(), Clk_ExtTS_Get() and Clk_ExtTS_Set()).

• If CLK_CFG_EXT_EN is DEF_DISABLED, time will be managed by the OS. You must
then add the port files clk_os.c and clk_os.h to your project. Theses files already exist
for µC/OS-II and µC/OS-III. If you are using your own OS, you’ll have to write that port
yourself. Please refer to µC/Clk user manual for further information.

5. Remove the #define FS_CFG_GET_TS_FROM_OS from the file fs_cfg.h

If you call fs_time functions in your application, you must replace them with calls to the equivalent
µC/Clk functions. Below a list of equivalent calls in fs_time and µC/Clk.

FS_DATE_TIME replaced by CLK_DATE_TIME
FSTime_TimeGet() replaced by Clk_GetDateTime()
FSTime_TimeSet() replaced by Clk_SetDateTime()
FSTime_Time_to_Str() replaced by Clk_DateTimeToStr()

 13

FSTime_Time_to_TS() replaced by Clk_DateTimeToTS_Unix()
FSTime_TS_to_Time() replaced by Clk_TS_UnixToDateTime()

Day of month is now [1, 31] instead of [0, 30].
Month of year is now [1, 12] instead of [0, 11].
Day of week is now [1, 7] instead of [0, 6].
Day of year is now [1, 366] instead of [0, 365].

1.03 Elimination of fs_bsp

The fs_bsp module has been eliminated from µC/FS. In order to compile your project with µC/FS 4.04,
you must remove the files fs_bsp.h and fs_bsp.c from your project. If you are not using an OS, you
must define the function FS_BSP_Dly_ms().

1.04 Changes in fs_cfg.h

You must #define FS_CFG_CONCURRENT_ENTRIES in file fs_cfg.h. You must also delete the
definition of FS_CFG_GET_TS_FROM_OS. Refer to the template in the µC/FS archive for an example.

1.05 API changes

Parameter dir of function FSEntry_Create()has been replaced. The following is the new declaration:
:

 void FSEntry_Create(CPU_CHAR *name_full,
 FS_FLAGS entry_type,
 CPU_BOOLEAN excl,
 FS_ERR *p_err);

Parameter entry_type can now take the following values:

- FS_ENTRY_TYPE_FILE
- FS_ENTRY_TYPE_DIR

 14

Parameter file of function FSEntry_Del()has been replaced. The following is the new declaration:

 void FSEntry_Del(CPU_CHAR *name_full,
 FS_FLAGS entry_type,
 FS_ERR *p_err);

The parameter entry_type can now take the following values:

- FS_ENTRY_TYPE_FILE
- FS_ENTRY_TYPE_DIR
- FS_ENTRY_TYPE_ANY

In FSEntry_TimeSet(), the type of the parameter p_time has been changed from (FS_DATE_TIME
*) to (CLK_DATE_TIME *), as in the following delclaration:

void FSEntry_TimeSet (CPU_CHAR *name_full,
 CLK_DATE_TIME *p_time,
 CPU_INT08U flag,
 FS_ERR *p_err);

 15

14 μC/FS v3.xx to v4.04

Though µC/FS V3.xx and V4.04 provide compatible—and often interchangeable—constructs for accessing
files and directories, many differences exist. Some of these, such as the new stratified software directory,
little affect the typical user’s experience. Others, particularly in the realm of initialization and
device/volume management, will require code modifications for any µC/FS V3 application to work with
V4.

1.01 Basic differences

1.01.01 Directories

The directory structure and file names have changed significantly.

Figure 1-1 shows µC/FS V4 directories. See uC-FS-V4 manual for more details regarding each folder.

Figure 1-1. μC/FS V4 directories.

1.01.02 Data types

µC/FS V4 now uses µC/CPU (for CPU- and compiler-independent) data types (e.g., CPU_INT32U).
Since the software no longer defines the Uxx and Ixx integer types (defined in global.h file for µC/FS
V3), any application that uses them will need to create typedefs to µC/CPU equivalents or replace them
by µC/CPU equivalent data types .

 16

1.01.03 Used memory management

µC/FS V4 now relies on µC/LIB for standard library services. The memory for objects used in the software
are now allocated from the µC/LIB heap (instead of a block assigned to the file system suite).

µC/FS V4 required memory is allocated by setting the following define to the approriate size in bytes. In
general, it is a good practice to have such defines grouped in the same file such as app_cfg.h file.

#define LIB_MEM_CFG_HEAP_SIZE 8192u

1.01.04 Configuration file

The configuration file has been renamed fs_cfg.h (from fs_conf.h) and the configuration define names and
values changed. See uC-FS-V4 manual for more details regarding the configuration constant defines.

1.01.05 Device driver

µC/FS V4 provides a template file uC-FS\APP\Template\fs_app.c which can be used to initialize
the file system and select the approriate device driver.
µC/FS V4 select a driver based on a constant that should be declared by the application . In general, these
defines are declared in the app_cfg.h file as follow.

 /* Cfg driver inclusion. */

#define APP_CFG_FS_IDE_EN DEF_DISABLED
#define APP_CFG_FS_MSC_EN DEF_DISABLED
#define APP_CFG_FS_NOR_EN DEF_DISABLED
#define APP_CFG_FS_RAM_EN DEF_DISABLED
#define APP_CFG_FS_SD_EN DEF_DISABLED
#define APP_CFG_FS_SD_CARD_EN DEF_ENABLED

In the above example, the SD card driver in card mode is selected. µC/FS V4 Manual provides more details
about each device driver

1.01.06 General configuration

As described in the previous section µC/FS V4 provides a template file fs_app.c used to initialize the
file system and select the approriate device driver. Initializing µC/FS requires a general configuration
structure to be passed as a pointer of type FS_CFG to FS_init() function.. The following presents an
example for the configuration,

#define APP_CFG_FS_DEV_CNT 1u
#define APP_CFG_FS_VOL_CNT 3u
#define APP_CFG_FS_FILE_CNT 5u
#define APP_CFG_FS_DIR_CNT 1u
#define APP_CFG_FS_BUF_CNT (2 * APP_CFG_FS_VOL_CNT)
#define APP_CFG_FS_DEV_DRV_CNT 1u
#define APP_CFG_FS_MAX_SEC_SIZE 512u

 17

The above defines are generally declared in the app_cfg.h file and are used in the fs_app.c file. See
µC/FS V4 manual for more details regarding FS_CFG structure.

1.01.07 Long file name (LFN) support

µC/FS V4 now relies on constant define FS_FAT_CFG_LFN_EN declared in fs_cfg.h file to
include/exclude the long file name support.

1.02 API differences

µC/FS V4 still supports stdio.h-style file access; however, the function names have been re-aligned with
the standard names. Table 1-1 translates the names from µC/FS V3 to V4 and includes in addition
functions that have been newly added to the software.

µC/FS V3 Function µC/FS V4 Function
FS_ClearErr() fs_clearerr()

FS_FClose() fs_fclose()

FS_FEof() fs_feof()

FS_FError() fs_ferror()

FS_FOpen() fs_fopen()

FS_FRead() fs_fread()

FS_FSeek() fs_fseek()

FS_FTell() fs_ftell()

FS_FWrite() fs_fwrite()

FS_GetFilePos() fs_fgetpos()

FS_MkDir() fs_mkdir()

FS_Remove() fs_remove()

FS_Rename() fs_rename()

FS_RmDir() fs_rmdir()

FS_SetFilePos() fs_fsetpos()

FS_Truncate() fs_ftruncate()

---- fs_fflush()

---- fs_flockfile()

---- fs_ftrylockfile()

---- fs_funlockfile()

---- fs_rewind()

---- fs_setbuf()

---- fs_setvbuf()

---- fs_chdir()

---- fs_getcwd()

Table 1-1. POSIX-Compatible API Translation

Table 1-2 lists approximate µC/FS V4 equivalents to the remaining V3 interface functions. For more
information on V4 functions, see µC/FS V4 Manual, Appendix A.

Outside of the POSIX function, API differences are more significant. The volume paradigm used for
Initialization differences

 18

µC/FS V4 separates volume functionality (access of a file system on some medium) from device
functionality (access and control of the medium). This greater formality results in major discrepancies
between the interface functions and internal operation of the two versions. Consequently, applications
which used the previous software version cannot be upgraded by mere function-for-function replacement.
µC/FS V4 Manual includes complete descriptions of all volume interface functions, along with example
code listings.

µC/FS V3 Function µC/FS V4 Function
FS_CopyFile() FSEntry_Copy()

FS_FindFirstFile() use fs_opendir()
FS_FindNextFile() use fs_readdir_r()
FS_FindClose() use fs_closedir()
FS_GetFileAttributes() FSEntry_Query()

FS_GetFileTime() FSEntry_Query()

FS_GetFileTimeEx() FSEntry_Query()

FS_TimeStampToFileTime() use FSTime_TS_to_Time()
FS_FileTimeToTimeStamp() use FSTime_Time_to_TS()
FS_GetFileSize() use FSFile_Query()
FS_GetNumVolumes() FSVol_GetVolCnt()

FS_GetFreeSpace() use FSVol_Query()
FS_GetTotalSpace() use FSVol_Query()
FS_GetVolumeFreeSpace() use FSVol_Query()
FS_GetVolumeInfo() use FSVol_Query()
FS_GetVolumeLabel() FSVol_LabelGet()
FS_GetVolumeSize() use FSVol_Query()
FS_GetVolumeName() FSVol_GetVolName()

FS_GetVolumeStatus() use FSVol_Query()
FS_IsVolumeMounted() FSVol_IsMounted()

FS_Move() use fs_rename()
FS_Read() use fs_fread()
FS_SetEndOfFile() use fs_truncate()
FS_SetFileAttributes() FSEntry_AttribSet()

FS_SetFileTime() FSEntry_TimeSet()

FS_SetFileTimeEx() FSEntry_TimeSet()

FS_SetVolumeLabel() FSVol_LabelSet()

FS_Verify() ----

FS_Write() use fs_fwrite()
FS_IsHLFormatted() use FSVol_Query()
FS_IsLLFormatted() use FSDev_Query()
FS_FormatLLIfRequired() use FSDev_Query() + FSDev_NOR_LowFmt()
FS_FormatLow() FSDev_NOR_LowFmt()
FS_Format() FSVol_Fmt()

Table 1-2. API Translation

The Windows-style directory listing functions, FS_FindFirstFile(), FS_FindNextFile() and
FS_FindClose() are not directly represented in µC/FS V4; however, implementations of the dirent.h
functions (fs_opendir(), fs_readdir_r() and fs_close()) provide the same capabilities.

 19

1.03 Initialization differences

Both µC/FS V3 and V4 have a FS_Init() function. In each version, this function initializes core
structures. However, in V3, it also calls FS_X_AddDevices(), in which the user is expected to place
code to add and configure file system devices.

Rather, in V4, the user is expected to add and configure devices after FS_Init() returns. The first step,
actually, is to register device drivers with the file system software (with FS_DevDrvAdd()). After that,
one or more devices which use those drivers can be added to file system with FSDev_Open(). The first
argument of this function is, like the first argument of V3’s various volume access functions, a name
composed of the device driver name, a colon, the device unit number and another colon. Unlike V3, in
which the unit number is assigned by the device driver, v4 uses unit numbers that are also known to the
device driver or device driver BSP. If there is a device driver BSP, then the same number is used as the
first argument of BSP functions to address the proper device.

In µC/FS V3, the FS_AddDevice() function returns a pointer to a FS_VOLUME. However, in V4, the
concept of device and volume are fully separate, so after a device is added, a volume must be opened on it
using FSVol_Open(). The first argument of this function is the string that is the volume identifier; the
second argument is the device identifier (the string used in FSDev_Open()). The two strings may be
identical, but that is not necessary, though it may be convenient.

A template file fs_app.c for initializing µC/FS V4 is provided within µC/FS V4 distribution. This file is
located under uC-FS\APP\Template folder.
For more information about initializing a µC/FS V4 project, see the example application described in
µC/FS V4 Getting Started document.

1.04 Cache differences

µC/FS V3 integrated into its single cache module two separate concepts of “cache”:

1. Volume cache, which stores complete sectors of the volume in RAM to accelerate future accesses.

2. File buffering, which involves the buffering of file data, as part of reads or writes, so that the user

can read/write small chunks of data from/to the file without a volume medium access being
necessary for each chunk.

In µC/FS V4, these concepts are treated separately. Volume cache functionality is separated into a cache
module. File buffering is implemented in file module functions, and this functionality is accessible in the
POSIX API layer’s fs_fflush() and fs_setvbuf() function, equivalent to the standard fflush()
and setvbuf(). The corresponding file module functions are FSFile_BufFlush() and
FSFile_BufAssign().

µC/FS V3 Function µC/FS V4 Function
FS_AssignCache() use FSVol_CacheAssign()
FS_CACHE_Clean() use FSVol_CacheFlush ()
FS_CACHE_SetMode() ----

FS_CACHE_SetQuota() ----

---- FSVol_CacheInvalidate()

Table 1-3. Cache API Translation
µ

