
µC/TCP-IP User's Manual

1. µC/Shell User Manual . 2

1.1 Directories and Files . 3

1.2 Using µC/Shell . 5

1.3 µC/Shell API Reference . 14

1.4 Licensing Policy . 25

1.5 References . 26

µC/Shell User Manual

µC/Shell User's Manual

2Copyright 2015 Micrium Inc.

µC/Shell User Manual

Version 1.03.00

µC/Shell is a stand-alone module allowing a string containing a command and its argument to

be parsed and executed. Though not directly tied with µC/TELNETs, it has been developed in

order to provide a shell for this product. However, it could be used with other applications.

This document describes how to configure and use the µC/Shell module in a µC/OS-II

environment.

Required Modules

The current version of µC/Shell requires the µC/LIB module. Please refer to the release notes

document for version information.

µC/Shell User's Manual

3Copyright 2015 Micrium Inc.

Directories and Files
The code and documentation of the µC/Shell module are organized in a directory structure

according to “AN 2002, µC/OS-II Directory Structure.” Specifically, the files may be found in

the following directories:

\Micrium\Software\uC-Shell

This is the main directory for µC/Shell

\Micrium\Software\uC-Shell\Doc

This directory contains the µC/Shell documentation files, including this user’s manual.

\Micrium\Software\uC-Shell\CFG\Template

This directory contains a template of µC/Shell configuration.

\Micrium\Software\uC-Shell\Source

This directory contains the µC/Shell source code. This protocol is implemented in two OS

independent files:

shell.c

shell.h

The location of the directory containing the example sample code application depends on the

evaluation board, and contains those files:

app.c shell_cfg.h

Example configuration file.

includes.h

Master include file used by the application.

µC/Shell User's Manual

4Copyright 2015 Micrium Inc.

net_cfg.h

µC/TCP-IP configuration file.

os_cfg.h

µC/OS-II configuration file.

cpu_cfg.h

µC/CPU configuration file.

µC/Shell User's Manual

5Copyright 2015 Micrium Inc.

Using µC/Shell

Before going into an example of µC/Shell usage, a few design concepts have to be explained.

Since µC/Shell is not associated with any particular product, modules in need of a shell facility

(such as µC/TELNETs) interact with it by means of an application callback function. This

way, those modules are able to use or not to use the shell in a totally transparent manner.

From the caller point of view, once the commands have been developed and the initialization

performed, all that is needed to do is a call the main µC/Shell execution function:

CPU_INT16S Shell_Exec (CPU_CHAR *in,
 SHELL_OUT_FNCT out_fnct,
 SHELL_CMD_PARAM *pcmd_param,
 SHELL_ERR *perr);

This function parses the ‘ ’ parameter, a terminated string containing a completein NUL

command line (command name, followed by possible arguments being separated by spaces),

just like this one:

App_Test –a –b –c readme.txt

Once parsed, that is once the command name and its arguments have been extracted, µC/Shell

looks into its command tables for a command match (in this case is the name of theApp_Test

command), and invokes it.

Note that the function also has a ‘ ’ argument, which is a pointer to aShell_Exec() out_fnct

callback that handles the details of responding to the requester. In other words, if called by

µC/TELNETs, then µC/TELNETs has to provide the details of the response; if called by a

UART, the UART should handle the response. Finally, the ‘ ’ is a pointer to apcmd_param

structure containing additional parameters for the command to use.

For more details on this function, please proceed with the next section.

Commands, Callbacks, and Data Types

µC/Shell commands (i.e., commands placed in a ‘command table’) all have this prototype:

µC/Shell User's Manual

6Copyright 2015 Micrium Inc.

 CPU_INT16S My_Cmd (CPU_INT16U argc,
 CPU_CHAR *argv[],
 SHELL_OUT_FNCT out_fnct,
 SHELL_CMD_PARAM *pcmd_param);

where ‘ ’ is a count of the arguments supplied and ‘ ’, an array of pointers to theargc argv

strings which are those arguments. As for the return value, it is command specific, and will be

used as the return value for the function. However, in case of an error, Shell_Exec()

 should be returned. SHELL_EXEC_ERR

Commands are also defined by the data type:SHELL_CMD_FNCT

typedef CPU_INT16S (*SHELL_CMD_FNCT)(CPU_INT16U ,
 CPU_CHAR **,
 SHELL_OUT_FNCT ,
 SHELL_CMD_PARAM *);

s mentioned in the preceding section, each command is responsible for responding to its

requester, and this is done with the help of the last parameter: the pointer to the output

function. This function has the following prototype:

CPU_INT16S My_Out_Fnct (CPU_CHAR *pbuf,
 CPU_INT16U buf_len,
 void *popt);

where ‘ ’ is a pointer to a response buffer having a length of ‘ ’. The thirdpbuf buf_len

parameter, ‘ ’, is an optional argument used to provide implementation specific informationpopt

(port number, UART identification, etc.). As for the return value, it is suggested to return the

number of data octets transmitted, if the link has beenSHELL_OUT_RTN_CODE_CONN_CLOSED

closed, and for any other error.SHELL_OUT_ERR

The output function is also defined by a data type, :SHELL_OUT_FNCT

typedef CPU_INT16S (*SHELL_OUT_FNCT)(CPU_CHAR *,
 CPU_INT16U ,
 void *);

Finally the ‘ ’ is used to pass additional information to the command. The currentpcmd_param

implementation has provision for the current working directory, as well as an option parameter

used by the output function:

µC/Shell User's Manual

7Copyright 2015 Micrium Inc.

1.

2.

3.

typedef struct shell_cmd_param {
 void *pcur_working_dir;
 void *pout_opt;
 CPU_BOOLEAN *psession_active;
} SHELL_CMD_PARAM;

Note that future implementation could add members to this structure to support more

parameters.

µC/Shell Startup Code

We provide you with an example (i.e the application code) use of µC/Shell which is found in

 and it was written to provide a startup example on how to use the capabilities of theapp.c

µC/Shell module. simply initializes µC/OS?II, µC/TCP-IP and µC/Shell, and creates aapp.c

few tasks and other kernel objects that will give the user information about the state of the

system. Note that you DO NOT need an RTOS like µC/OS?II or a TCP/IP stack like

µC/TCP-IP to use µC/Shell.

Before you can use µC/Shell, the following has to be performed:

Develop/create your command(s)

Implement output functions (if needed)

Initialize µC/Shell

This section of the manual will give you some examples of the above steps. Note that some

sections of the source code have been removed or modified to help focus on the µC/Shell

module use.

CPU_INT16S App_TestShellOut (CPU_CHAR *pbuf, (1)
 CPU_INT16U buf_len,
 void *popt)
{
 APP_TRACE_DEBUG((pbuf)); (2)
 APP_TRACE_DEBUG((" executed.\n\r"));

 return (buf_len); (3)
}

Listing - Output function

µC/Shell User's Manual

8Copyright 2015 Micrium Inc.

 Function implementing the ‘output’ facility. This function MUST have the prototype(1)

specified in section 2.01.

 This implementation simply outputs ‘pbuf’, using the trace mechanism (typically the(2)

console output).

 Returns the number of positive data octets transmitted (no error).(3)

CPU_INT16S App_TestCmd (CPU_INT16U argc, (1)
 CPU_CHAR *argv[],
 SHELL_OUT_FNCT out_fnct,
 SHELL_CMD_PARAM *pcmd_param)
{
 CPU_INT16U cmd_namd_len;
 CPU_INT16S output;
 CPU_INT16S ret_val;

 cmd_namd_len = Str_Len(argv[0]);
 output = out_fnct(argv[0], (2)
 cmd_namd_len,
 pcmd_param->pout_opt);

 switch (output) {
 case SHELL_OUT_RTN_CODE_CONN_CLOSED:
 case SHELL_OUT_ERR:
 ret_val = SHELL_EXEC_ERR;
 break;

 default:
 ret_val = output;
 }

 return (ret_val); (3)
}

Listing - Command

 Function implementing a test command.(1)

 Use the output function to display the command name.(2)

 The return value is command specific, with the exception of SHELL_EXEC_ERR in(3)

case of an error.

µC/Shell User's Manual

9Copyright 2015 Micrium Inc.

static SHELL_CMD AppShellCmdTbl[] = (1)
{
 {"App_test", App_TestCmd},
 {0, 0 }
};

void App_InitShell (void)
{
 CPU_BOOLEAN success;
 SHELL_ERR err;

 APP_TRACE_DEBUG(("Initialize Shell ... "));

 success = Shell_Init(); (2)
 if (success == DEF_OK) {
 APP_TRACE_DEBUG(("done.\n\r"));
 } else {
 APP_TRACE_DEBUG(("failed.\n\r"));
 return;
 }

 APP_TRACE_DEBUG(("Adding Shell command table ... "));

 Shell_CmdTblAdd("App", App_ShellAppCmdTbl, &err); (3)
 if (err == SHELL_ERR_NONE) {
 APP_TRACE_DEBUG(("done.\n\r"));
 } else {
 APP_TRACE_DEBUG(("failed.\n\r"));
 }
}

Listing - Initialization of module

 Declare and populate a SHELL_CMD structure table that will hold the ‘App’ shell(1)

commands. The first member of this structure is the command name, and the other

member a pointer to a function implementing the command itself.This command table

MUST have its last entry set to ‘0’.

 Initializes µC/Shell internal variables.(2)

 Add the AppShellCmdTbl module command table to the Shell.(3)

µC/Shell Example Use

Once C/Shell has been initialized, the only thing left to do it to call the function,Shell_Exec()

like depicted above.

µC/Shell User's Manual

10Copyright 2015 Micrium Inc.

void App_TestShell (void)
{
 SHELL_ERR err;
 SHELL_CMD_PARAM cmd_param;
#if APP_FS_EN
 FS_DIR *pdir;
#endif

 APP_TRACE_DEBUG(("Testing Shell, executing command ...\n\r"));

#if APP_FS_EN
 pdir = FS_OpenDir("");
 cmd_param.pcur_working_dir = (void *)pdir;
#else
 cmd_param.pcur_working_dir = (void *)0;
#endif
 cmd_param.pout_opt = (void *)0;

 Shell_Exec("App_test -a -b -c", &App_TestShellOut, &err); (1)

 switch (err) {
 case SHELL_ERR_NONE:
 APP_TRACE_DEBUG(("Command executed, no error.\n\r"));
 break;

 case SHELL_ERR_NULL_PTR:
 APP_TRACE_DEBUG(("Error, NULL pointer passed.\n\r"));
 break;

 case SHELL_ERR_CMD_NOT_FOUND:
 APP_TRACE_DEBUG(("Error, command NOT found.\n\r"));
 break;

 case SHELL_ERR_CMD_SEARCH:
 APP_TRACE_DEBUG(("Error, searching command.\n\r"));
 break;

 case SHELL_ERR_ARG_TBL_FULL:
 APP_TRACE_DEBUG(("Error, too many arguments\n\r"));
 break;

 default:
 break;
 }
}

Listing - Example use

(1) Invoke the function responsible for parsing and calling the specifiedShell_Exec()

command. In this case, passing ‘App_Test’ will result in the function App_TestCmd() to

be called.

µC/Shell User's Manual

11Copyright 2015 Micrium Inc.

µC/Shell Module Configuration

The µC/Shell module has to be configured according to your specific needs. A template

configuration file () is included in the module package (see Chapter 1, Directoriesshell_cfg.h

and Files), and this file should be copied and added to your project. Here is the list of the

values and description for each of the configuration variable. However, keep in mind that

future releases of this module might include more configuration options.

#define 3SHELL_CFG_CMD_TBL_SIZE

Size of the command module table. Once this table is full, it is not possible to add any more

command module table, unless is called. This should be defined to theShell_CmdTblRem()

total amount of module registering command table in µC/Shell.

#define 5SHELL_CFG_CMD_ARG_NBR_MAX

Maximum number or argument(s) a command may pass on the string holding the complete

command.

#define 6SHELL_CFG_MODULE_CMD_NAME_LEN_MAX

Maximum length for module command name, including the termination character.NUL

µC/Shell Internal Details

At initialization time, that is when the function is called, two module commandShell_Init()

pools are being created: the free and the used. Right after initialization, no module command

are being used, so all of the module command are located into theSHELL_CFG_CMD_TBL_SIZE

free pool, and the used pool is empty, like displayed below (set to 3 inSHELL_CFG_CMD_TBL_SIZE

this example).

µC/Shell User's Manual

12Copyright 2015 Micrium Inc.

Figure - Pools after initialization

Adding module command tables to the shell with Shell_CmdTblAdd() results in a free module

command being taken from that pool, initialized, and taken into the used pool. Below is a

representation of the pools after two module command tables have been inserted.

Figure - Pools after modules insertion

When the Shell_Exec() function is being called in order to parse a line and execute a

command, the lists of module commands have to be searched to find a match. Since the

module command tables are inserted in a way analog to a stack, the search begins with the last

addition. For instance, if the ‘OS’ table has been inserted just after the ‘Net’ one, command

search will always look at the ‘OS’ command table, then proceed with the ‘Net’ command

table if a match has not been found.

µC/Shell User's Manual

13Copyright 2015 Micrium Inc.

Two searches are necessary to locate a command. First, the correct module command table has

to be found based on the command prefix, and then the corresponding command inside that

table is looked for. The second search also starts with index ‘0’ of the command table, and

increments that index by ‘1’ until a match is found.

As mentionned at the beginning of this chapter, the command name and arguments passed on

the command line are separated by space characters. It is the responsibility of the commands

to interpret and extract those arguments. For instance, this command:

App_Test –a

would result in ‘ ’ to be passed as the argument for the ‘ ’ command. If the dash-a App_Test

needs to be removed, it has to be performed by the command itself. Note however, that

µC/LIB functions are available to assist with that.

µC/Shell User's Manual

14Copyright 2015 Micrium Inc.

µC/Shell API Reference

This section provides a reference to the µC/Shell API. Each of the user-accessible services is

presented in alphabetical order. The following information is provided for each of those

services:

A brief description

The function prototype

The filename of the source code

A description of the arguments passed to the function

A description of the returned value(s)

Specific notes and warnings on using the service

A usage example

µC/Shell User's Manual

15Copyright 2015 Micrium Inc.

Shell_CmdTblAdd()

void Shell_CmdTblAdd (CPU_CHAR *cmd_tbl_name,
 SHELL_CMD cmd_tbl[],
 SHELL_ERR *perr);

File Called from

shell.c Application

Allocates and initializes a module command, and inserts a command table into it.

Arguments

cmd_tbl_name

Pointer to character string representing the name of the command table.

cmd_tbl

Command table to add.

perr

Pointer to variable that will receive the return error code from this function :

SHELL_ERR_NONE

No error.

SHELL_ERR_NULL_PTR

Argument ' ' passed a pointer.cmd_tbl NULL

SHELL_ERR_MODULE_CMD_EMPTY

Command table empty.

µC/Shell User's Manual

16Copyright 2015 Micrium Inc.

SHELL_ERR_MODULE_CMD_ALREADY_IN

Command table already added, or command table name already used.

SHELL_ERR_MODULE_CMD_NONE_AVAIL

NO available module command to allocate.

SHELL_ERR_MODULE_CMD_NAME_NONE

No module command name found.

SHELL_ERR_MODULE_CMD_NAME_TOO_LONG

Module command name too long.

SHELL_ERR_MODULE_CMD_NAME_COPY

Copy error.

Returned Values

None.

Notes/Warnings

The ' ' argument is the prefix of the commands in ' '. In order to speed upcmd_tbl_ame cmd_tbl

the command search, the shell first locate the appropriate table based on the prefix of the

command. Hence, it is recommended that all commands in a table be named with the same

prefix. For instance, µC/TCP-IP related command displaying statistics could look like :

Net_stats

while a file system command listing the current directory would be :

FS_ls

The names of those module commands are respectively ' ' and ' '.Net FS

µC/Shell User's Manual

17Copyright 2015 Micrium Inc.

Example

static SHELL_CMD App_ShellAppCmdTbl[] = {
 {"App_test", App_TestShellCmd},
 {0, 0}
};

void App_CmdTblAdd (void)
{
 SHELL_ERR err;

 APP_TRACE_DEBUG(("Adding Shell command table ... "));

 Shell_CmdTblAdd("App", App_ShellAppCmdTbl, &err);
 if (err == SHELL_ERR_NONE) {
 APP_TRACE_DEBUG(("done.\n\r"));
 } else {
 APP_TRACE_DEBUG(("failed.\n\r"));
 }
}

µC/Shell User's Manual

18Copyright 2015 Micrium Inc.

Shell_CmdTblRem ()

void Shell_CmdTblRem (CPU_CHAR *cmd_tbl_name,
 SHELL_ERR *perr);

File Called from

shell.c Application

Removes a command table from the shell.

Arguments

cmd_tbl_name

Pointer to character string representing the name of the command table.

perr

Pointer to variable that will receive the return error code from this function:

SHELL_ERR_NONE

No error.

SHELL_ERR_NULL_PTR

Argument 'cmd_tbl_name' passed a pointer.NULL

SHELL_ERR_MODULE_CMD_NOT_FOUND

Module command NOT found.

Returned Values

None.

µC/Shell User's Manual

19Copyright 2015 Micrium Inc.

Notes/Warnings

None.

Example

void App_CmdTblRem (void)
{
 SHELL_ERR err;

 APP_TRACE_DEBUG(("Removing Shell command table ... "));

 Shell_CmdTblRem("App", &err);
 if (err == SHELL_ERR_NONE) {
 APP_TRACE_DEBUG(("done.\n\r"));
 } else {
 APP_TRACE_DEBUG(("failed.\n\r"));
 }
}

µC/Shell User's Manual

20Copyright 2015 Micrium Inc.

Shell_Exec ()

CPU_INT16S Shell_Exec (CPU_CHAR *in,
 SHELL_OUT_FNCT out_fnct,

File Called from

shell.c Application

Parses and executes the command passed in parameter.

Arguments

in

Pointer to a string holding a complete command and its argument(s).CPU_CHAR

out_fnct

Pointer to 'output' function used by command.

perr

Pointer to variable that will receive the return error code from this function:

SHELL_ERR_NONE

No error.

SHELL_ERR_NULL_PTR

Argument 'in' passed a pointer.NULL

SHELL_ERR_CMD_NOT_FOUND

Command NOT found.

SHELL_ERR_CMD_SEARCH

µC/Shell User's Manual

21Copyright 2015 Micrium Inc.

Error searching for command.

SHELL_ERR_CMD_EXEC

Error executing command.

SHELL_ERR_ARG_TBL_FULL

Argument table full and token still to be parsed.

Returned Values

SHELL_EXEC_ERR

If command executing error.

Command specific return value

Otherwise.

Notes/Warnings

The command may generate some output that should be transmitted to some device (socket,

RS-232 link, ...). The caller of this function is hence responsible for the implementation of

such function, if output is desired.

µC/Shell User's Manual

22Copyright 2015 Micrium Inc.

Example

void App_Exec (void)
{
 SHELL_ERR err;

 APP_TRACE_DEBUG(("Testing Shell, executing command ...\n\r"));

 Shell_Exec("App_test -a -b -c", &App_TestShellOut, &err);

 switch (err) {
 case SHELL_ERR_NONE:
 APP_TRACE_DEBUG(("Command executed, no error.\n\r"));
 break;

 case SHELL_ERR_NULL_PTR:
 APP_TRACE_DEBUG(("Error, NULL pointer passed.\n\r"));
 break;

 case SHELL_ERR_CMD_NOT_FOUND:
 APP_TRACE_DEBUG(("Error, command NOT found.\n\r"));
 break;

 case SHELL_ERR_CMD_SEARCH:
 APP_TRACE_DEBUG(("Error, searching command.\n\r"));
 break;

 case SHELL_ERR_ARG_TBL_FULL:
 APP_TRACE_DEBUG(("Error, too many arguments\n\r"));
 break;

 case SHELL_ERR_CMD_EXEC:
 APP_TRACE_DEBUG (("Error, executing command.\n\r"));
 break;

 default:
 break;
 }
}

µC/Shell User's Manual

23Copyright 2015 Micrium Inc.

Shell_Init()

CPU_BOOLEAN Shell_Init (void);

File Called from

shell.c Application

Initializes the shell.

Arguments

None

Returned Values

DEF_OK

Shell initialization successful.

DEF_FAIL

Otherwise.

Notes/Warnings

The function must be called before the other Shell function are invoked. Shell_Init()

 must also only be called once from product's application.Shell_Init()

µC/Shell User's Manual

24Copyright 2015 Micrium Inc.

Example

void App_Init (void)
{
 CPU_BOOLEAN success;
 SHELL_ERR err;

 APP_TRACE_DEBUG(("Initialize shell ... "));

 Success = Shell_Init();
 if (success == DEF_OK) {
 APP_TRACE_DEBUG(("done.\n\r"));
 } else {
 APP_TRACE_DEBUG(("failed.\n\r"));
 }
}

µC/Shell User's Manual

25Copyright 2015 Micrium Inc.

Licensing Policy
You need to have a valid license to embed µC/Shell in a product that is sold with the intent to

make a profit. Each individual product (i.e., your product) requires its own license, but the

license allows you to distribute an unlimited number of units for the life of your product.

Please indicate the processor type(s) (ARM7, ARM9, MCF5272, MicroBlaze, Nios II, i.e.,

PPC,) that you intend to use.etc.

For licensing details, contact us at:

Micrium

1290 Weston Road, Suite 306

Weston, FL 33326

USA

Phone: +1 954 217 2036

Fax: +1 954 217 2037

E-mail: Licensing@Micrium.com

Web: www.Micrium.com

http://www.micrium.com

µC/Shell User's Manual

26Copyright 2015 Micrium Inc.

References
Labrosse, Jean J.

MicroC/OS-II: The Real Time Kernel. 2nd edition.

Newnes, 2002.

Labrosse, Jean J.

. Embedded Systems Building Blocks

R&D Technical Books, 2000

	µC/Shell User Manual
	Directories and Files
	Using µC/Shell
	µC/Shell API Reference
	Licensing Policy
	References

