
User’s Manual
V1.0

Weston, FL 33326

μC/TraceTM

The RTOS Event Analyzer

Micriμm

1290 Weston Road, Suite 306

Weston, FL 33326

USA

www.micrium.com

Designations used by companies to distinguish their products are often claimed as

trademarks. In all instances where Micriμm Press is aware of a trademark claim, the product

name appears in initial capital letters, in all capital letters, or in accordance with the

vendor’s capitalization preference. Readers should contact the appropriate companies for

more complete information on trademarks and trademark registrations. All trademarks and

registered trademarks in this manual are the property of their respective holders.

Copyright © 2013 by Micriμm except where noted otherwise. All rights reserved. Printed in

the United States of America. No part of this publication may be reproduced or distributed

in any form or by any means, or stored in a database or retrieval system, without the prior

written permission of the publisher.

μC/Probe and the accompanying files are sold "as is". Micriμm makes and customer receives

from Micriμm no express or implied warranties of any kind with respect to the software

product, documentation, maintenance services, third party software, or other services.

Micriμm specifically disclaims and excludes any and all implied warranties of

merchantability, fitness for a particular purpose, and non-infringement. Due to the variety of

user expertise, hardware and software environments into which μC/Probe may be

subjected, the user assumes all risk of using μC/Probe. The maximum liability of Micriμm

will be limited exclusively to the purchase price.

600-uC-Trace-001

Table of Contents

Chapter 1 Introduction .. 5
1-1 μC/Trace System Overview ... 8

Chapter 2 μC/Trace Recorder Module ... 11
2-1 Including the μC/Trace Files in your C Project 13
2-1-1 Copy the μC/Trace files to your Micrium folder 13
2-1-2 Move the μC/Trace Configuration Template Files 13
2-1-3 Insert the μC/Trace files into your project .. 13
2-1-4 Configure your Compiler’s Include Paths ... 14
2-2 Including header files ... 14
2-3 μC/Trace Functional Description .. 15

Chapter 3 Configuring μC/Trace ... 19
3-1 Enabling or Disabling μC/Trace ... 19
3-1-1 os_cfg.h .. 19
3-2 Recorder Configuration Settings ... 19
3-2-1 trace_cfg.c/h .. 20

Chapter 4 Initializing μC/Trace ... 25

Chapter 5 Instrumenting with μC/Trace ... 27
5-1 Kernel Service Calls ... 27
5-2 Interrupt Service Routines ... 27
5-3 User-Defined Events .. 28

Chapter 6 Recording with μC/Trace ... 31
6-1 Start Recording with μC/Probe ... 31
6-2 Start Recording without μC/Probe .. 32
3

Chapter 7 Analyzing with μC/Trace .. 33
7-1 Uploading with μC/Probe .. 33
7-2 Uploading with a Debugging Tool ... 34

Appendix A μC/Trace Analysis .. 37
A-1 Task Scheduling Events .. 37
A-2 Semaphore Events ... 38
A-3 Message Queue Events ... 39
A-4 Mutex Events ... 40
A-5 Memory Partition Events ... 41

Appendix B Frequently Asked Questions (FAQs) ... 43

Appendix C Bibliography ... 49
4

Chapter

1

Introduction

μC/Trace is a set of runtime diagnostics tools for embedded systems based on μC/OS-III. By

simply including four C files into your project, μC/Trace gives you an unprecedented insight

into the runtime behavior, which allows for reduced troubleshooting time and improved

software quality, performance and reliability. Complex software problems which otherwise

may require many hours or days to solve, can with μC/Trace be understood quickly, often

in a tenth of the time otherwise required. This saves you many hours of troubleshooting

time. Moreover, the increased software quality resulting from using μC/Trace can reduce the

risk of defective software releases, causing damaged customer relations.

The insight provided by μC/Trace also allows you to find opportunities for optimizing your

software. You might have unnecessary resource conflicts in your software, which are "low

hanging fruit" for optimization and where a minor change can give a significant

improvement in real-time responsiveness and user-perceived performance. By using

μC/Trace, software developers can reduce their troubleshooting time and thereby get more

time for developing new valuable features. This means a general increase in development

efficiency and a better ability to deliver high-quality embedded software within budget.

μC/Trace provides more than 20 interconnected views of the runtime behavior, including

task scheduling and timing, interrupts, interaction between tasks, as well as user events

generated from your application as shown in Figure 1-1. μC/Trace can be used side-by-side

with a traditional debugger and complements the debugger view with a higher level

perspective, ideal for understanding the complex errors where a debugger’s perspective is

too narrow.

μC/Trace is more than just a viewer. It contains several advanced analyses developed since

2004, that helps you faster comprehend the trace data. For instance, it connects related

events, which allows you to follow messages between tasks and to find the event that

triggers a particular task instance. Moreover, it provides various higher level views such as

the Communication Flow graph and the CPU load graph, which make it easier to find

anomalies in a trace.
5

Chapter 1
μC/Trace does not depend on additional trace hardware, which means that it can be used in

deployed systems to capture rare errors which otherwise are hard to reproduce.

Figure 1-1 μC/Trace Analyzer Windows

The μC/Trace solution consists of three parts:

■ The PC application (μC/Trace Analyzer), used to analyze the recordings as shown in

Figure 1-1.

■ A trace recorder library (μC/Trace Recorder) that integrates with μC/OS-III, provided in

C source code.

■ Optionally, μC/Probe can be used to trigger and upload recordings from the target.
6

The μC/Trace Analyzer is a Windows application for the PC.

The μC/Trace Recorder stores the event data in a RAM buffer, which is uploaded on request

to the host PC using your existing debugger connection or μC/Probe.

And finally, you can use μC/Probe and a special control designed for μC/Trace called

μC/Trace Trigger Control, to trigger a recording and launch the μC/Trace Analyzer. The

μC/Trace Trigger Control is shown in Figure 1-2:

Figure 1-2 μC/Trace Trigger Control

μC/Probe is optional. If your platform is not supported by μC/Probe you can still use

μC/Trace.
7

Chapter 1
1-1 μC/TRACE SYSTEM OVERVIEW

μC/Trace is a set of tools designed to record and analyze trace data from an embedded

system. Figure 1-3 shows an overview of the entire system and data flow when used in

conjunction with μC/Probe.

Figure 1-3 μC/Trace Data Flow Diagram

F1-3(1) You start by creating trigger points in your embedded target application code.

Each part of your code that you want to record needs to call a single line

macro. μC/Probe is aware of all the trigger points you configured because you

will create a configuration table that lists all the available trigger points.

ELF Header

Program Header
Table

.text

.rodata

.data

Section Header
Table

. . .

Embedded System
Running μC/Probe-Target
and μC/Trace-Recorder

Windows PC
Running μC/Probe and

μC/Trace Analyzer

JT
AG

R
S

-2
32

TC
P/

IP

ELF File

μC/Trace

(3)

(2)

(1)

(4)

(5)

Symbol names
and addresses

Analyze recordings

Internet

[2]

[1]

[1] Including LAN, WAN, etc.
[2] Target Resident Code is

only required if Triggers
enabled and with TCP/IP
and RS-232 interfaces

μC/Probe (optional)
Trigger recordings

(6)

Memory
Dump

(7)

Components surrounded by
the dotted line are OPTIONAL
8

μC/Trace System Overview
F1-3(2) You have to provide μC/Probe with an ELF file with DWARF-2, -3 or -4

debugging information. The ELF file is generated by your toolchain’s linker.

μC/Probe parses the ELF file and reads the addresses of each of the embedded

target’s symbols (i.e., global variables) including the memory address of the

buffer where the trace recording is stored. For more information on building

the ELF file, see the μC/Probe Target Manual.

Alternatively, you can also provide a chip definition file that contains the chip’s

peripheral register addresses or provide your own custom XML based symbol

file for those cases when your toolchain cannot generate one of the supported

ELF formats.

F1-3(3) During design-time, you create a μC/Probe workspace using a Windows PC

and μC/Probe. You design your own dashboard by dragging and dropping

virtual controls and indicators onto a data screen. Each virtual control and

indicator needs to be mapped to an embedded target’s symbol by selecting it

from the symbol browser. However, for μC/Trace purposes, all you have to do

is drag and drop a μC/Trace Trigger control from the μC/Probe’s toolbox. Refer

to the document μC/Probe User’s Manual for more information on using the

μC/Trace Trigger control.

F1-3(4) Before proceeding to the run-time stage, μC/Probe needs to be configured to

use one of the three communication interfaces: JTAG, RS232 or TCP/IP. In order

to start the run-time stage, you click the Run button and μC/Probe starts

making requests to read the value of all the memory locations associated with

each virtual control and indicator (i.e., all the trace trigger points you

programmed in the embedded target).

F1-3(5) μC/Probe will display all the available trigger points and you can arm or disarm

each of them.

F1-3(6) When the embedded application executes the part of your code delimited by

one of your armed trigger points, μC/Probe will take care of uploading the

recording and launching the analysis tools.

F1-3(7) μC/Probe is optional. So, if your platform is not supported by μC/Probe, you

can still record and analyze traces with μC/Trace by creating a memory dump

file and loading it directly with the μC/Trace Analyzer.
9

http://www.micrium.com/probe/uC-Probe-TargetManual.pdf
http://www.micrium.com/probe/uC-Probe-UsersManual.pdf

Chapter 1
If you are unsure of which communication interface to use with μC/Probe, try the

communication options advisor in Figure 1-4:

Figure 1-4 Communication Options Advisor

This document will describe how to use μC/Trace by discussing the following topics:

■ Including the μC/Trace supporting code in your embedded target

■ μC/Trace Triggers Functional Description that includes the following topics:

■ Configuring and Initializing μC/Trace in your embedded target

■ Instrumenting your embedded target code with μC/Trace Triggers

■ Triggering and analyzing recordings from a μC/Trace Trigger control for μC/Probe.

J-Link is a USB-based JTAG emulator typically
available in-circuit or as an external probe for
debugging and flash programming purposes.

Do you have a J-Link available?

J-Link allows you to run
μC/Probe without any

special embedded
target resident code.

It is also possible to run
μC/Probe concurrently

with your Debugger
Software by sharing the

J-Link connection.

Download the
appropriate J-Link

drivers for your platform
from www.segger.com

Do you have WiFi or an
ethernet port available

in your board?

Do you have a running
TCP/IP stack in your

embedded target
code?

Is your TCP/IP
stack Micriμm's

μC/TCP-IP?

μC/TCP-IP comes
μC/Probe-ready.

All you need to do is
include a few C files
and call a function to
initialize the module.
This communication

interface yields one of
the fastest throughput

available.

Does your third-party
TCP/IP stack have

support for BSD
sockets?

The μC/Probe target
module can be ported to

other TCP/IP stacks
including WiFi modules

very easily.

Is your embedded
development tool

Embedded Workbench
from IAR Systems?

The Embedded
Workbench from IAR

Systems
is fully integrated with

μC/Probe
via a TCP/IP bridge
between C-SPY and

μC/Probe.
It is a great way to
expand the scope

level of your
debugging experience

from the C
implementation level
provided by C-SPY to

the system level
provided by μC/Probe.

Does your board
include an

RS-232 port?

The μC/Probe
module can be

ported to any UART
and hundreds of
them are already

available from
Micriμm at no cost.

Is your embedded
development IDE
based on Eclipse?

There is an Eclipse
plugin for μC/Probe that

creates a TCP/IP
bridge between the
GDB debugger and
μC/Probe (unlike the

rest of communication
interface options this

interface is not
real-time and the

updates are only made
by halting the CPU).

Unfortunately your
platform setup is not

supported by μC/Probe
at this time.

In order to have your
platform included in our
development schedule,

please send us an
e-mail to

info@micrium.com

You can purchase
Micriμm's μC/TCP-IP

stack. For more
information contact:
sales@micrium.com

Unless you can
modify your TCP/IP

stack to provide
UDP sockets for
typical functions
such as open(),

read() and write(),
you cannot use your
ethernet port or WiFi

module with
μC/Probe.

Refer to the μC/Probe
Target Manual for

instructions on where to
download, include and
initialize the μC/Probe

target module for
μC/TCP-IP.

Refer to the μC/Probe
Target Manual for

instructions on how to
port the μC/Probe target

module for TCP-IP.

Refer to the μC/Probe
User's Manual for

instructions on how to
use the C-SPY plugin

for μC/Probe.

Refer to the μC/Probe
Target Manual for

instructions on where
to download, port,

include and initialize
the μC/Probe target
module for RS-232.

Download the Eclipse
plugin for μC/Probe

from www.micrium.com

YES NO

YES NO

YES NO

YES NO

YES NO

YES NO

YES NO

YES NO
10

http://www.segger.com/jlink-software.html
mailto:sales@micrium.com?subject=uC/TCP-IP for uC/Probe Information
http://micrium.com/probe/EclipsePlugin.pdf
mailto:info@micrium.com?subject=uC/Probe: Unsupported Platform
http://www.micrium.com/probe/uC-Probe-TargetManual.pdf#page=45&view=Fit
http://www.micrium.com/probe/uC-Probe-UsersManual.pdf#page=42&view=Fit
http://www.micrium.com/probe/uC-Probe-TargetManual.pdf#page=35&view=Fit
http://www.micrium.com/probe/uC-Probe-TargetManual.pdf#page=9&view=Fit
http://www.micrium.com/probe/uC-Probe-TargetManual.pdf#page=9&view=Fit

Chapter

2

μC/Trace Recorder Module

The μC/Trace Recorder module is the set of C files that reside on the embedded target and

implement the events triggering and recording mechanism. The files are available at

http://micrium.com/trace and this chapter aims at providing a brief introduction to the files.

Figure 2-1 μC/Trace C Files

Micrium
Software

EvalBoa
[Sem

uC Trac
Rec

Sou

Cfg

rds
miconductorN
[BoardRefe

[Proje
os_

e
orders
Percepio

OS
uC

TraceR
tr
tr
tr
tr

Cf

In

Ke

rce
trace.c
trace.h

trace_cfg.
trace_cfg.

Name]
renceNumber
ctName]
_cfg.h

OS III
trace_os.

ecorderLibr
cBase.c
cHardwarePo
cKernel.c
cUser.c

g
trcConfig
trcHardwa

clude
trcBase.h
trcKernel
trcKernel
trcTypes.
trcUser.h

rnelPorts
uCOS III

trcKe
trcKe

c
h

]

h

ary

rt.c

.h
rePort.h

.h
Hooks.h
h

rnelPort.c
rnelPort.h

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Files tto Edit
11

http://www.micrium.com/trace

Chapter 2
F2-1(1) Somewhere in your application level code (typically os_cfg.h) you have to

define the macro TRACE_CFG_EN as 1 to enable μC/Trace.

F2-1(2) μC/Trace is designed to work with third-party trace recorders such as the one

developed by a Swedish company called Percepio AB. An OS layer defined in

trace_os.h allows you to use any of the supported third-party recorders

without any changes to your application code.

F2-1(3) The core source files for the trace recorder library by Percepio.

F2-1(4) A couple of files allow you to configure the size of the RAM buffer and the

hardware clock among other settings as described in Chapter 3, on page 20.

F2-1(5) The core header files for the trace recorder library by Percepio.

F2-1(6) The kernel port that implements how to record the kernel events.

F2-1(7) The source files for μC/Trace and the optional μC/Trace Triggering mechanism.

F2-1(8) The configuration files for μC/Trace and the optional triggering mechanism.

Typically you move these files to the same location where your application

level code is, as described in Chapter 3, “trace_cfg.c/h” on page 17.
12

Including the μC/Trace Files in your C Project
2-1 INCLUDING THE μC/TRACE FILES IN YOUR C PROJECT

μC/Trace requires μC/OS-III version 3.04.01 or newer and the files described in the previous

section and shown in Figure 2-1.

In case you have a μC/OS-III based project and want to include μC/Trace in it, the next

sections describe the steps involved.

2-1-1 COPY THE μC/TRACE FILES TO YOUR MICRIUM FOLDER

Download the μC/Trace files from http://micrium.com/trace and copy the entire

$/Micrium/Software/uC-Trace folder shown in Figure 2-1 into your own

$/Micrium/Software folder.

2-1-2 MOVE THE μC/TRACE CONFIGURATION TEMPLATE FILES

Move (Cut+Paste) the following files to the folder where you keep the rest of your

application level configuration files (i.e. app_cfg.h):

$\Micrium\Software\uC-Trace\Cfg\trace_cfg.c

$\Micrium\Software\uC-Trace\Cfg\trace_cfg.h

2-1-3 INSERT THE μC/TRACE FILES INTO YOUR PROJECT

Some IDEs such as Eclipse do not require you to specify which files to compile by inserting

each file in your project. But, other IDEs will require you to add the following files into your

project:

$\Micrium\Software\uC-Trace\Source\trace.c

$\Micrium\Software\uC-Trace\Source\trace.h

$\Micrium\Software\uC-Trace\Cfg\trace_cfg.c

$\Micrium\Software\uC-Trace\Cfg\trace_cfg.h
13

Chapter 2
2-1-4 CONFIGURE YOUR COMPILER’S INCLUDE PATHS

Configure your compiler’s include paths with the following:

$\Micrium\Software\uC-Trace\Source
$\Micrium\Software\uC-Trace\Recorders\Percepio
$\Micrium\Software\uC-Trace\Recorders\Percepio\OS\uCOS-III
$\Micrium\Software\uC-Trace\Recorders\Percepio\TraceRecorderLibrary
$\Micrium\Software\uC-Trace\Recorders\Percepio\TraceRecorderLibrary\Cfg
$\Micrium\Software\uC-Trace\Recorders\Percepio\TraceRecorderLibrary\Include
$\Micrium\Software\uC-Trace\Recorders\Percepio\TraceRecorderLibrary\KernelPorts\uCOS-III

2-2 INCLUDING HEADER FILES

Additionally, each C file that makes use of μC/Trace, whether it is for Initialization or

Instrumentation purposes (i.e. app.c), needs to include the following header files by using

the preprocessing directive #include:

Listing 2-1 Including μC/Trace header files

#include "trace.h"
#include "trace_cfg.h"
14

μC/Trace Functional Description
2-3 μC/TRACE FUNCTIONAL DESCRIPTION

Figure 2-2 shows the block diagram of the entire system including the trace recording

module in the target code and μC/Probe and μC/Trace in the host system. The entire

operation can be described in 10 steps.

Figure 2-2 μC/Trace Block Diagram

(1)

(2)
(3)

(4)

(6)

(5)

(7)

(8)

(9)

(10)
15

Chapter 2
F2-2(1) The first step to get started with μC/Trace is enabling the module in the

configuration file for μC/OS-III (os_cfg.h) through the definition of the macro

TRACE_CFG_EN set to 1.

The second step is optional and available only if your platform is supported by

μC/Probe. If so, in this configuration stage you get to define the trigger points

in the table declared in trace_cfg.c as shown in Listing 2-2:

Listing 2-2 μC/Trace Triggers Configuration Table

The first parameter is the trigger ID, the second parameter is the name of

trigger and the third parameter is the number of recordings you want to capture

before disarming the trigger automatically.

Once you have the trigger IDs configured, you can start instrumenting your

code by simply calling the macro TRACE_TRIG() with the trigger ID as a

parameter wherever you want to start recording.

F2-2(2) You initialize the μC/Trace module by calling the macro TRACE_INIT().

/*
**
* UC/TRACE TRIGGERS IDS
**
*/

#define TRACE_CFG_TRIG_ID_SW1 1234u
#define TRACE_CFG_TRIG_ID_SW2 1235u
#define TRACE_CFG_TRIG_ID_ISR_RS232_RX 1236u

/*
**
* UC/TRACE TRIGGERS CONFIGURATION TABLE
**
*/

const TRACE_CFG_TRIG TraceCfgTrigTbl[] =
{
 {TRACE_CFG_TRIG_ID_SW1, "Task # 1 (SWITCH 1)", 3},
 {TRACE_CFG_TRIG_ID_SW2, "Task # 2 (SWITCH 2)", 3},
 {TRACE_CFG_TRIG_ID_ISR_RS232_RX, "RS-232 Rx ISR (SWITCH 3)", 1}
};
16

μC/Trace Functional Description
If you are not planning to use μC/Probe to trigger recordings, then you will

also need to call the macro TRACE_START() to start recording.

F2-2(3) You initialize the optional μC/Trace Triggers module by calling the function

TraceTrigInit() which is declared in trace.c.

F2-2(4) The user interface for μC/Trace Triggers is μC/Probe. Once you get μC/Probe

communicating with your target as described in the μC/Probe documentation

you can create a workspace that contains the μC/Trace Trigger control found in

the μC/Probe toolbox. This control, allows you to not only arm and disarm the

recording triggers in your target but also upload the recording and launch the

μC/Trace Analyzer Windows application.

In this step, the user would arm one or more of the trigger points.

F2-2(5) As soon as the part of your target code reaches the point where the

TRACE_TRIG() macro gets executed, the system will start recording.

F2-2(6) All the kernel events will be recorded into RAM.

F2-2(7) The events get recorded into RAM by using a special encoding that takes 4

bytes per event.

F2-2(8) As soon as the recording gets stopped either because your application calls the

TRACE_STOP() macro or the RAM buffer gets full, the μC/Trace Triggers

module gets notified by the recorder.

F2-2(9) In turn, the μC/Trace Triggers module notifies μC/Probe that the recording is

finished.

F2-2(10) μC/Probe and its μC/Trace Triggers control in particular receive the notification

from the target and start reading the recording off the target’s RAM, dump the

raw bytes to a file and launch the μC/Trace Windows application to analyze the

trace.
17

Chapter 2
18

Chapter

3

Configuring μC/Trace

This chapter aims at providing a more detailed description of the tweaks you need to do to

your application level code and the recorder library to run μC/Trace.

3-1 ENABLING OR DISABLING μC/TRACE

3-1-1 OS_CFG.H

The first step to get started with μC/Trace is enabling the module in os_cfg.h through the

definition of the macro TRACE_CFG_EN set to 1, which is useful to disable tracing once your

embedded application gets deployed:

Figure 3-1 Enable/Disable μC/Trace

3-2 RECORDER CONFIGURATION SETTINGS

The configuration files for the recorder library are usually placed along with your

application level configuration files.

There is a configuration template in $\Micrium\Software\uC-Trace\Cfg.

You can make a copy of this template and place it along with the rest of your application

level configuration files.

#define TRACE_CFG_EN 1 /* Enable/Disable the uC/Trace Recorder. */
19

Chapter 3
3-2-1 TRACE_CFG.C/H

These configuration files define a series of macros to select the hardware platform,

customize your recordings and configure the optional μC/Trace triggering system.

SELECTING YOUR HARDWARE PLATFORM

The recorder needs to have knowledge of the hardware platform your are running, the

timer/counter used for driving the system ticker in particular.

μC/Trace has been ported to the following hardware platforms:

■ ARM Cortex-M

■ ARM Cortex-A

■ Renesas RX600

If your platform includes one of the above, then all you need to do is configure the macro

TRACE_CFG_HW_PORT in trace_cfg.h as shown in the following code listing:

Listing 3-1 Selecting your Hardware Platform

If your hardware platform is not listed above, please contact Micriμm.

/*

* HARDWARE PORT
*
* Note(s) : The recorder needs to have knowledge of the hardware platform your are running,
* the timer/counter used for driving the system ticker in particular.
*
* Select from one of the following supported platforms:
*
* - ARM CORTEX-M : 4u
* - RENESAS RX600 : 5u
* - ARM CORTEX-A : 14u

*/

#define TRACE_CFG_HW_PORT 5u
20

Recorder Configuration Settings
CUSTOMIZING YOUR RECORDINGS

Also in trace_cfg.h, the two settings you may want to edit are the maximum number of

events to store in RAM and the maximum number of kernel objects to record as shown in

the following code listing:

Listing 3-2 Recorder Storage Settings

L3-2(1) This defines the capacity of the event buffer, i.e., the number of records it may

store. Each registered event typically uses one record (4 bytes).

L3-2(2) These define the maximum number of kernel object types to record. Adjust to

your application needs.

/*
**
* RECORDING BUFFER
*
* Note(s) : This defines the capacity of the event buffer,
* i.e., the number of records it may store.
* Each recorded event typically uses one record (4 byte in RAM).
* Adjust to your application needs and memory resources.
**
*/

#define TRACE_CFG_MAX_EVENTS 2000u (1)

/*
**
* RECORDED KERNEL OBJECTS
*
* Note(s) : These define the maximum number of kernel object types to record.
* Adjust to your application needs and memory resources.
**
*/

#define TRACE_CFG_MAX_TASK 16u (2)
#define TRACE_CFG_MAX_ISR 8u
#define TRACE_CFG_MAX_Q 16u
#define TRACE_CFG_MAX_SEM 32u
#define TRACE_CFG_MAX_MUTEX 8u
#define TRACE_CFG_MAX_FLAG 2u
#define TRACE_CFG_MAX_MEM 2u
21

Chapter 3
CONFIGURING THE μC/TRACE TRIGGERING SYSTEM

The third step is optional and available only if your platform is supported by μC/Probe and

you want to trigger recordings from μC/Probe.

If so, in this configuration stage you get to enable the system and define the trigger points

as described in the following code listings.

/*
**
* UC/TRACE TRIGGERS MODULE
*
* Note(s) : The uC/Trace Triggering mechanism requires the hardware platform to be
* supported by uC/Probe.
*
* If your platform is uC/Probe-ready, then enable this module by setting
* the macro below to 1.
**
*/

#define TRACE_CFG_TRIG_EN 1u (1)

#if (defined(TRACE_CFG_TRIG_EN) && (TRACE_CFG_TRIG_EN > 0u))

/*
**
* UC/TRACE TRIGGERS SETTINGS
**
*/

#define TRACE_CFG_TRIG_MAX_TRIGS 16u (2)
#define TRACE_CFG_TRIG_NAME_LEN 32u

/*
**
* UC/TRACE TRIGGERS TASK SETTINGS
**
*/

#define TRACE_CFG_TRIG_TASK_STK_SIZE 128u (3)
#define TRACE_CFG_TRIG_TASK_PRIO 20u
22

Recorder Configuration Settings
Listing 3-3 μC/Trace Triggers Configuration Table

L3-3(1) As previously mentioned, the μC/Trace Triggering mechanism requires the

hardware platform to be supported by μC/Probe. If your platform is

μC/Probe-ready, then enable this module by setting the macro

TRACE_CFG_TRIG_EN defined in trace_cfg.h to 1.

L3-3(2) The macro TRACE_CFG_TRIG_MAX_TRIGS declared in trace_cfg.h, defines the

maximum number of trigger points throughout your code.

In the same file, the macro TRACE_CFG_TRIG_NAME_LEN allows you to define

the maximum number of characters of each trigger point’s name, in case you

need to tweak the memory footprint.

L3-3(3) The triggering mechanism uses a μC/OS-III task to trigger the recordings and

communicate with μC/Probe. The macros TRACE_CFG_TRIG_TASK_STK_SIZE
and TRACE_CFG_TRIG_TASK_PRIO define the task’s stack size and priority

respectively.

L3-3(4) The first step to configure trigger points is to create a series of unique IDs for

each of your trigger points. In this example TRACE_CFG_TRIG_ID_SW1 is the

trigger point executed when you press switch 1 on the board.

/*
**
* UC/TRACE TRIGGERS IDS
*
* Note(s) : First you create a series of unique IDs for each of your trigger points.
* In this example TRACE_CFG_TRIG_ID_SW1 is the trigger point executed when
* you press the board's switch 1.
**
*/

#define TRACE_CFG_TRIG_ID_SW1 1234u (4)
#define TRACE_CFG_TRIG_ID_SW2 1235u
#define TRACE_CFG_TRIG_ID_SW3 1236u
23

Chapter 3
Once you have configured all the settings defined in trace_cfg.h, you switch to the file

trace_cfg.c where you take each of your trigger IDs and create a configuration table as

shown in the code listing below.

Listing 3-4 μC/Trace Triggers Configuration Table

L3-4(1) The first parameter is the trigger ID, the second parameter is the trigger’s name

and the third parameter is the number of recordings you want to capture before

disarming the trigger automatically.

/*
**
* UC/TRACE TRIGGERS CONFIGURATION TABLE
*
* Example : { [Trigger ID], [Trigger Source Name], [Max # Files to Record Before Disarming] }
*
* Note(s) : Make sure the number of entries in this configuration table is
* less than the value of TRACE_CFG_TRIG_MAX_TRIGS
* otherwise, any other triggers in excess will be ignored.
**
*/

const TRACE_CFG_TRIG TraceCfgTrigTbl[] =
{
 {TRACE_CFG_TRIG_ID_SW1, "Signal Task # 1 (SWITCH 1)", 3}, (1)
 {TRACE_CFG_TRIG_ID_SW2, "Post Q Task # 2 (SWITCH 2)", 3},
 {TRACE_CFG_TRIG_ID_SW3, "Other Kernel Objs (SWITCH 3)", 1}
};
24

Chapter

4

Initializing μC/Trace

Initializing the μC/Trace recorder module is easy, the first thing you need to do is call the

macro TRACE_INIT() as shown in the following code listing:

Figure 4-1 Initializing the μC/Trace Recorder

The next step depends on whether or not your platform is supported by μC/Probe and you

want to trigger recordings from μC/Probe. Otherwise, you can still use μC/Trace without

μC/Probe.

int main(void)
{
 OS_ERR err;

 CPU_IntDis(); /* Disable all interrupts. */

#if (defined(TRACE_CFG_EN) && (TRACE_CFG_EN > 0u))
 TRACE_INIT(); /* Initialize the uC/Trace recorder. */
#endif
.
.
.

25

Chapter 4
If you are using μC/Probe to trigger recordings then you need to call the function to

initialize the triggering module as shown in the following code listing:

Listing 4-1 Initializing the μC/Trace Triggering Module

static void AppTaskStart (void *p_arg)
{
.
.
.
#if (defined(TRACE_CFG_EN) && (TRACE_CFG_EN > 0u))
 TraceTrigInit(); /* Initialize uC/Trace triggers. */
#endif
.
.
.

26

Chapter

5

Instrumenting with μC/Trace

There are three groups of events you can record with μC/Trace; Kernel Service Calls,

Interrupt Service Routines and User-Defined Events.

This chapter describes how to instrument your embedded application with each of those

three types of events.

5-1 KERNEL SERVICE CALLS

Because μC/OS-III has already been instrumented, every Kernel Service Call gets

automatically recorded as soon as you start recording.

5-2 INTERRUPT SERVICE ROUTINES

Unlike Kernel Service Calls, ISRs do not get automatically recorded. Instead, you need to

place three marcos for each ISR you want to record.

To register an ISR for recording, you call the macro TRACE_OS_ISR_REGISTER() with three

arguments: unique ISR ID, Name and Priority as shown in the code listing below:

Listing 5-1 Registering an ISR for Recording

#if (defined(TRACE_CFG_EN) && (TRACE_CFG_EN > 0u))
 TRACE_OS_ISR_REGISTER(1, "RS-232 Tx ISR", 4); /* Registering an ISR. */
#endif
27

Chapter 5
Additionally, you need to mark the beginning and end of the ISR by calling the macros

TRACE_OS_ISR_BEGIN() and TRACE_OS_ISR_END() as shown in the code listing below:

Listing 5-2 Tracing an ISR

L5-2(1) The macro TRACE_OS_ISR_BEGIN() takes the unique ID (i.e. vector number) of

the ISR you want to record as an argument.

L5-2(2) The macro TRACE_OS_ISR_END() takes no arguments.

5-3 USER-DEFINED EVENTS

The last group of events you can record with μC/Trace is the user-defined events. Similar to

ISRs, you first need to register a user-defined event by calling the macro

TRACE_USR_EVT_CREATE() with the name of the event as shown in the code listing below:

Listing 5-3 Creating a User-Defined Event

void BSP_Ser_ISR_Tx_Handler (void)
{
#if (defined(TRACE_CFG_EN) && (TRACE_CFG_EN > 0u))
 TRACE_OS_ISR_BEGIN(1); /* Mark the beginning of an ISR. */ (1)
#endif
 SCI2.SSR.BIT.TEND;
 SCI2.SSR.BIT.TEND = 0;
 BSP_OS_SemPost(&BSP_SerTxWait); /* Post to the semaphore */
#if (defined(TRACE_CFG_EN) && (TRACE_CFG_EN > 0u))
 TRACE_OS_ISR_END(); /* Mark the end of an ISR. */ (2)
#endif
}

#if (defined(TRACE_CFG_EN) && (TRACE_CFG_EN > 0u))
 CPU_INT16U evt_hnd;

 evt_hnd = TRACE_USR_EVT_CREATE("50 ms User Event"); /* Create a user-defined event. */
#endif
28

User-Defined Events
The macro to create the event returns an event handle and then, all you have to do is call

the macro TRACE_USR_EVT_LOG() with the event handle to record it as shown in the code

listing below:

Listing 5-4 Tracing a User-Defined Event

#if (defined(TRACE_CFG_EN) && (TRACE_CFG_EN > 0u))
 TRACE_USR_EVT_LOG(evt_hnd); /* Recording a user-defined event every 50ms. */
#endif
29

Chapter 5
30

Chapter

6

Recording with μC/Trace

There are two ways to start recording with μC/Trace. If your platform is supported by

μC/Probe, then you can use μC/Probe and a special control called μC/Trace Trigger control

to trigger and analyze recordings. If not, then you can still use μC/Trace without μC/Probe.

This chapter describes the two methods.

6-1 START RECORDING WITH μC/PROBE

Once you have the trigger IDs configured as described in Chapter 3, on page 17, you can

simply call the macro TRACE_TRIG() with the trigger ID as a parameter wherever you want

to start recording.

When the part of your code that calls this macro gets executed, the system will check if the

trigger has been armed from μC/Probe and will not only initiate recording but also notify

μC/Probe that the recording is ready for upload and analysis.

The code listing below shows an example of start recording whenever the user presses a

button:

Listing 6-1 Start Recording with μC/Probe

AppSwitch1 = BSP_SwsRd(1); /* Read the status of switch #1. */

if (AppSwitch1 == DEF_ON) {
#if (defined(TRACE_CFG_EN) && (TRACE_CFG_EN > 0u))
 TRACE_TRIG(TRACE_TRIG_ID_SW1); /* Evaluate the recording trigger conditions. */
#endif
.
.
.

31

Chapter 6
6-2 START RECORDING WITHOUT μC/PROBE

If your platform is not supported by μC/Probe, you can still use μC/Trace. All you have to

do is call the macro TRACE_START() to start the recording and TRACE_STOP() to stop the

recording. You can also let the recording fill the RAM buffer until it gets full and μC/Trace

will stop the recording automatically.

It is not necessary to start μC/OS-III before starting the recording and you can even start

recording right from the embedded application’s main entry point as shown in the following

code listing:

Listing 6-2 Start Recording without μC/Probe

int main(void)
{
 OS_ERR err;

 CPU_IntDis(); /* Disable all interrupts. */

#if (defined(TRACE_CFG_EN) && (TRACE_CFG_EN > 0u))
 TRACE_INIT(); /* Initialize the µC/Trace recorder. */
 TRACE_START(); /* Start recording. */
#endif
32

Chapter

7

Analyzing with μC/Trace

The analysis of the trace is performed with a windows application in your host PC.

μC/Trace Analyzer is available for sale at http://percepio.com/tracealyzer/uctrace/

There is also a 30-day evaluation version that includes a demo trace, so you can try it

without even writing a single line of code for your embedded target.

There are two ways to upload your recordings to your host PC for analysis. You can use

μC/Probe or your debugging’s software memory dump function.

This chapter will describe the two methods.

7-1 UPLOADING WITH μC/PROBE

When the part of your code instrumented with your trigger gets executed, the system will

check if the trigger has been armed from μC/Probe and will not only initiate recording but

also notify μC/Probe that the recording is ready for upload and analysis.
33

Chapter 7
The recording gets uploaded by μC/Probe using one of the many communication interfaces

and is made available as shown in the figure below:

Figure 7-1 Uploading with μC/Probe

7-2 UPLOADING WITH A DEBUGGING TOOL

If your debugging tools include a memory dump utility, then you can use it to save the

μC/Trace recording to a binary file.

This type of utility typically asks you for the memory start address and the number of bytes

to save.

The μC/Trace recording buffer is stored in RAM and in the form of a data structure called

RecorderData.
34

Uploading with a Debugging Tool
Find out what is the address of RecorderData and calculate the number of bytes according

to the number of events. Or, if your debugger tools have a utility to watch expressions, then

add a watch for RecorderData and write down the address location and the number of

bytes from the filesize field as shown below:

Figure 7-2 Recording Buffer
35

Chapter 7
Once you have the address and number of bytes, you can use a memory dump utility to

save the contents of RecorderData to a binary file as shown below:

Figure 7-3 Memory Dump Utility

Once you have the file saved in your host PC, all you have to do is open the μC/Trace

Analyzer application for Windows and open the file from the File -> Open menu.
36

Appendix

A

μC/Trace Analysis

The μC/Trace Analyzer application gets installed with its own HTML based documentation

that describes each analysis tool in detail. This appendix is designed to be a quick reference

to analyze some of the most representative μC/OS-III kernel events.

A-1 TASK SCHEDULING EVENTS

The main trace view provides all recorded information on a vertical time line. This view is

complemented by over a dozen additional views providing high level overviews or focused

views from different perspectives. The task scheduling is presented using color coded

rectangles, where the color helps to identify the task or ISR.

Figure A-1 Task Scheduling Events
37

Appendix A
Notice in Figure A-1 that the ISR represented by the red rectangle does not have that dotted

pattern above its rectangle like the other tasks do. That is because μC/OS-III context

switches to the ISR immediately while the other tasks have to wait for μC/OS-III to schedule

their execution. In other words, that dotted pattern gives you an idea of how long your

tasks are waiting for their turn at the CPU.

A-2 SEMAPHORE EVENTS

μC/OS-III semaphores make their mark on the trace by logging the kernel service calls

OSSemPend() and OSSemPost() as shown in Figure A-2:

Figure A-2 μC/OS-III Semaphore Events

If the call to OSSemPend() results in a blocking call because the semaphore has not being

signaled yet, the viewer will display the event with a red rectangle and when the semaphore

finally gets signaled it will be displayed again as a green rectangle along with the blocking

time between parentheses as shown in the image above.
38

A-3 MESSAGE QUEUE EVENTS

μC/Trace records μC/OS-III message queue events such as OSQPend() and OSQPost() as

shown in Figure A-3:

Figure A-3 μC/OS-III Message Queue Events

Notice in the example illustrated above how the Switches Task posts 4 messages into the

Global Message Queue and notice how in turn Task #2 consumes each message.

The diagram helps you keep track of each message by making sure no message is being

dropped or the queue is overflowing.
39

Appendix A
A-4 MUTEX EVENTS

μC/Trace records μC/OS-III mutex events such as OSMutexPend() and OSMutexPost() as

shown in Figure A-4:

Figure A-4 μC/OS-III Mutex Events

Notice how the tool shows you which task owns the mutex and similar to semaphores, if

pending on a mutex results in a blocking call it will show you for how long it had to wait

for the mutex to be released. This is a great tool to identify possible resource starvation

cases.
40

A-5 MEMORY PARTITION EVENTS

μC/Trace records μC/OS-III memory partition events such as OSMemGet() and OSMemPut()
as shown in Figure A-4:

Figure A-5 μC/OS-III Memory Partition Events

The image above shows the example of a memory partition of 16 blocks of memory.

Because the tool keeps track of how many blocks of memory are left in the memory

partition, notice how Task #1 first acquires three blocks of memory and then releases just

one of them.
41

Appendix A
42

Appendix

A

Frequently Asked Questions (FAQs)

■ What is the difference between the Evaluation Edition and Professional Edition
of μC/Trace?

The Evaluation Edition of μC/Trace gives you the full functionality of the Professional

Edition but for a limited period of time of 30 days. The best way to experience the

differences is to download and try for yourself. You can easily switch between the two

editions using the “Demo” option on the Welcome screen and under the File menu.

■ Where do I find the Evaluation Edition?

Both editions are included in our single installer. The Evaluation Edition does not

require a license key. Just use the “Evaluate” option, and take the opportunity to

explore the premium features. The evaluation period ends after 30 days.

■ Is μC/Probe required to use μC/Trace?

No, μC/Probe is optional.

■ How difficult it is to include μC/Trace into my μC/OS-III embedded project?

It is very easy. If your embedded project is running μC/OS-III v3.04.01 or newer, all you

need to do is download the μC/Trace Recorder and include 4 C files into your project.

■ How do I get started with μC/Trace?

There is a comprehensive User’s Manual in the μC/Trace Downloads section of our

website. If you have any questions after reading this, do not hesitate to contact Micriμm

at info@micrium.com.

■ What chips are supported by μC/Trace?
43

Appendix A
μC/Trace takes advantage of the generic, hardware-independent μC/OS-III code.

However, to get high resolution timestamping, it is necessary to read a hardware timer.

We provide official pre-configured solutions for some common chips, including the

ARM Cortex-M and Renesas RX600 architectures. However, if your hardware platform is

not listed, then the port is an easy task to accomplish yourself; it is a simple matter of

defining a set of four macros to match the timer features of your chip. Several corporate

users have done this themselves, to perform a proper evaluation.

■ How much RAM does the μC/Trace recorder library need?

The recorder RAM buffer can typically be adjusted to fit your system. A small buffer of

5-10 KB can often give a trace of 50-200 ms, depending on the application.

For example, in one demo project on a ARM Cortex-M4 MCU, we used 70 KB of RAM,

which allowed for 17,500 events. That gave about 7 seconds of trace history at 2500

events/second, which is a fairly normal rate (10 KB/s).

A buffer of 32KB may last for over ten seconds in a system with low average activity.

Note that you can always record continuously, for hours, days or weeks, even with a

small buffer, since the ring-buffer mode allows for keeping only the most recent events.

For example, when stopped at a breakpoint, the buffer would then contain the trace

leading up to the current state. You may also choose to stop the recording when the

buffer is full.

■ Which IDEs/debuggers are supported?

Most debuggers will work, as long as it can save the RAM buffer in “.bin”, “.hex” or

“.mch” (MPLAB) formats. In your debugger IDE, open the RAM memory view and use

the “save” option (there is usually such an option). Then just open the resulting file – it

will locate the trace data in the RAM dump automatically.

■ I included the μC/Trace code into my μC/OS-III project, but it does not
compile. The error message is: “Struct OS_TCB has no field TaskID”. What am
I doing wrong?

Make sure your project is running μC/OS-III version 3.04.01 or newer.
44

■ I included the μC/Trace code into my μC/OS-III project, but it does not
compile. The error message is: “Struct OS_TCB has no field NamePtr”. What
am I doing wrong?

Make sure your os_cfg.h enables debugging by setting the macro OS_CFG_DBG_EN to
1.

■ I included the μC/Trace code into my μC/OS-III project, but it does not
compile. The error message is: “Duplicate symbol
“_vTraceTaskInstanceIsFinished” in trace.o”. What am I doing wrong?

In order to make it easy to include μC/Trace, we have a C file that includes other C files.

This way you only have to insert 4 files into your project. To fix this issue you can either

make sure you only inserted 4 files into your project (trace.c/h and trace_cfg.c/h)
or go ahead and remove the appropriate #includes in trace.c.

■ What does the label “(startup)” mean?

This is displayed as a placeholder “task”, representing the initial time interval before any

task activation has been recorded.

■ My trace does not load, or is showing only a single task named “(startup)”.
What’s wrong?

Check the following things:

■ Is TRACE_INIT() called? This must be called early, before calling any kernel or

recorder function.

■ Is TRACE_START() called?

■ Double-check that you have enabled μC/Trace in os_cfg.h:

#define TRACE_CFG_EN 1

■ Are there any error messages from the recorder? This is displayed when opening a

trace file with the μC/Trace Windows application. The most common error message

is from insufficient allocation of object handles, i.e., for tasks, queues and other

kernel objects. This is configured in trace_cfg.h in macros named

TRACE_CFG_MAX_TASK, TRACE_CFG_MAX_MUTEX, etc. Using the debugger, add a
45

Appendix A
watch for RecorderDataPtr and check if the field internalErrorOccured is 0 or

1. If 1, then there has been an error and the systemInfo field then holds the error

message. Such error messages are stored by calls to vTraceError(), so placing a

break-point there is often a good idea.

■ Are you reading the right memory area when saving the RAM contents in your

debugger? Make sure that trace data block (RecorderDataPtr) is fully included.

■ Is your debugger output format supported? Currently, we support binary files (use

file suffix “.bin” or “.dump”), which can be generated by the GCC debugger (GDB),

by J-Link Commander and by Renesas HEW. It also supports the Intel Hex format,

which can be generated using IAR Embedded Workbench (use file suffix “.hex”).

We also support “.mch” files from MPLAB. If your debugger can provide RAM

dumps but only in other formats, please contact info@micrium.com.

 If you still have problems, please contact Micriμm support (info@micrium.com).

■ I get an error message “Object table lookup with invalid object handle or
object class!” when opening the trace. What’s wrong?

This error usually means the trace recording functions are been called before μC/OS-III

has been initialized.

Make sure to call TRACE_INIT() and TRACE_START() before OSInit().

■ I get an error message “Warning, Recorder reported error: …” when opening
the trace. What’s wrong?

Check the following things:

■ The most common problem: double-check that you have added the following line

in the very end of your os_cfg.h:

#define TRACE_CFG_EN 1
46

■ In case the message is “Not enough TASK handles…”, “Not enough QUEUE handles

…” or similar, you need to increase the value some of the constants in

trace_cfg.h (TRACE_CFG_MAX_TASK, TRACE_CFG_MAX_Q, etc.) to better reflect the

maximum number of tasks or queues used.

■ In other cases, you can get more details using your debugger. Put a break-point

inside vTraceError (where the error message is stored), and check the context in

which it is generated.

■ How do I enable tracing of interrupt handlers?

Interrupt handlers (or Interrupt Service Routines, ISRs) are not recorded by default. ISRs

using μC/OS-III functions, such as OSTaskQPost(), are however recorded automatically

but without the ISR identity, e.g., “ISR using Queue #1?. To record ISRs properly, you

need to add two calls in the interrupt handlers you wish to record. See

TRACE_OS_ISR_BEGIN() and TRACE_OS_ISR_END() for further information. Use

TRACE_OS_ISR_REGISTER() to set the name of the ISR.

■ What does the label “ISR #1? mean?

If you have not set a name for the ISR using TRACE_OS_ISR_REGISTER(), the ID stored

using TRACE_OS_ISR_BEGIN() is displayed.

■ What does the label “ISR using …” mean?

If you have interrupt handlers using μC/OS-III functions, such as OSTaskQPost(), but

are not calling TRACE_OS_ISR_BEGIN() and TRACE_OS_ISR_END(), the recorder

assumes that the μC/OS-III call was made from an interrupt handler, but does not know

the identity of the interrupt handler. In this case, the name is set to “ISR using “, with

the queue or semaphore used by the μC/OS-III call. To fix this, add

TRACE_OS_ISR_BEGIN() and TRACE_OS_ISR_END() calls to your interrupt handlers.

■ I’m not using μC/OS-III. Is there a way to use μC/Trace with RTOS XYZ?

No. μC/Trace is designed to work with μC/OS-III only. However, Percepio has versions

of the analyzer for several other RTOS. Please contact support@percepio.com for more

information.

■ What is the relationship between μC/Trace and μC/Probe?
47

Appendix A
μC/Trace and μC/Probe are part of the embedded systems tools offered by Micriμm.

You can use μC/Probe and a special control designed for μC/Trace called μC/Trace

Trigger Control, to trigger a recording from your PC, upload the recording to your PC

and launch the μC/Trace Analyzer, which is much nicer than using your debugger’s

memory dump utility.

■ What is the relationship between Micriμm and Percepio?

Percepio is a member of the Micriμm partner program, and has created a special

version of their recorder and analyzer for μC/OS-III under the name μC/Trace. The

name μC/Trace is a trademark of Micriμm.

■ What is the background of μC/Trace?

The first version of the tool was created by Percepio in 2004, during Dr. Johan Kraft’s

PhD work at Mälardalen University. A simple trace visualization tool was needed to

verify scheduling simulations, but when ABB Robotics began using the tool

systematically in 2005 (on VxWorks), the project started its evolution into something

much larger. Between 2005 and 2008, the tool evolved to version 1.31 and Percepio

learned a lot by implementing trace recorders for various real-time operating systems,

such as VxWorks, OSE, RTXC Quadros and FreeRTOS, on various industrial systems

spanning from small microcontrollers to large Intel-based systems. The second

generation of the tool was initiated in 2009 and released in 2011.

In 2013 Percepio and Micriμm entered into an agreement to develop and commercialize

a version of the product built into μC/OS-III under the name μC/Trace.
48

Appendix

B

Bibliography

■ Labrosse Jean. μC/OS-III The Real-Time Kernel. Micriμm Press,

ISBN 978-0-98223375-3-0, 2009.
49

Appendix B
50

	Table of Contents
	Introduction
	1-1 µC/Trace System Overview

	µC/Trace Recorder Module
	2-1 Including the µC/Trace Files in your C Project
	2-1-1 Copy the µC/Trace files to your Micrium folder
	2-1-2 Move the µC/Trace Configuration Template Files
	2-1-3 Insert the µC/Trace files into your project
	2-1-4 Configure your Compiler’s Include Paths

	2-2 Including header files
	2-3 µC/Trace Functional Description

	Configuring µC/Trace
	3-1 Enabling or Disabling µC/Trace
	3-1-1 os_cfg.h

	3-2 Recorder Configuration Settings
	3-2-1 trace_cfg.c/h

	Initializing µC/Trace
	Instrumenting with µC/Trace
	5-1 Kernel Service Calls
	5-2 Interrupt Service Routines
	5-3 User-Defined Events

	Recording with µC/Trace
	6-1 Start Recording with µC/Probe
	6-2 Start Recording without µC/Probe

	Analyzing with µC/Trace
	7-1 Uploading with µC/Probe
	7-2 Uploading with a Debugging Tool

	µC/Trace Analysis
	A-1 Task Scheduling Events
	A-2 Semaphore Events
	A-3 Message Queue Events
	A-4 Mutex Events
	A-5 Memory Partition Events

	Frequently Asked Questions (FAQs)
	Bibliography

