
Target Manual
V4.0

Weston, FL 33326

μC/ Probe®

Graphical Live Watch®

Micriμm

1290 Weston Road, Suite 306

Weston, FL 33326

USA

www.micrium.com

Designations used by companies to distinguish their products are often claimed as

trademarks. In all instances where Micriμm Press is aware of a trademark claim, the product

name appears in initial capital letters, in all capital letters, or in accordance with the

vendor’s capitalization preference. Readers should contact the appropriate companies for

more complete information on trademarks and trademark registrations. All trademarks and

registered trademarks in this manual are the property of their respective holders.

Copyright © 2016 by Micriμm except where noted otherwise. All rights reserved. Printed in

the United States of America. No part of this publication may be reproduced or distributed

in any form or by any means, or stored in a database or retrieval system, without the prior

written permission of the publisher.

μC/Probe and the accompanying files are sold "as is". Micriμm makes and customer receives

from Micriμm no express or implied warranties of any kind with respect to the software

product, documentation, maintenance services, third party software, or other services.

Micriμm specifically disclaims and excludes any and all implied warranties of

merchantability, fitness for a particular purpose, and non-infringement. Due to the variety of

user expertise, hardware and software environments into which μC/Probe may be

subjected, the user assumes all risk of using μC/Probe. The maximum liability of Micriμm

will be limited exclusively to the purchase price.

600-uC-Probe-Target-003

Table of Contents

Chapter 1 Introduction .. 6

Chapter 2 μC/Probe-Target Modules ... 10

Chapter 3 Configuring μC/Probe-Target .. 14
3-1 Configuration Settings ... 14
3-1-1 General Configuration Settings ... 15
3-1-2 RS-232 Configuration Settings .. 17
3-1-3 TCP/IP Configuration Settings .. 18
3-1-4 USB Configuration Settings ... 19

Chapter 4 Initializing μC/Probe-Target ... 20

Chapter 5 Building μC/Probe-Target .. 22
5-1 Micrium’s Support Files ... 24
5-1-1 μC/CPU ... 25
5-1-2 μC/LIB ... 26
5-2 μC/Probe-Target C Files .. 28
5-2-1 RS-232 interface .. 28
5-2-2 TCP/IP Interface ... 31
5-2-3 USB Interface ... 33

Appendix A Porting μC/Probe-Target ... 38
A-1 Porting the RS-232 Communication Module 38
A-2 Porting the TCP/IP Communication Module 48
3

Appendix B μC/Probe-Target API Functions & Macro’s .. 50
B-1 ProbeCom_StrRd() ... 51
B-2 ProbeCom_StrWr() ... 52
B-3 ProbeCom_TerminalOut() .. 53
B-4 ProbeCom_TerminalExecComplete() .. 54
B-5 ProbeCom_TerminalExecSet() .. 55
B-6 ProbeCom_TerminalInSet() .. 56

Appendix C ELF Files with DWARF Debug Information ... 58
C-1 IAR EWARM ... 59
C-2 KEIL μVision 4 .. 61
C-3 Renesas e2Studio .. 62

Appendix D XML-based Custom Symbol Files (CSF) ... 64

Appendix E Terminal Window Control .. 68
E-1 Prerequisites .. 70
E-2 Downloading the Necessary Code for your Embedded Target 70
E-3 Including the Code in your Embedded Target Project 72
E-4 Configuring the Code in your Embedded Target Project 74
E-5 Initializing the Command Line and Tracing Interfaces 76
E-6 Using the Tracing Function ... 77
E-7 Using the Tracing Message Icon Tags .. 78
E-8 Using the Command Line Interface .. 79

Appendix F μC/Trace Triggers Control ... 80
F-1 Including the μC/Trace supporting code in your target 83
F-2 μC/Trace Triggers Functional Description .. 85

Appendix G Oscilloscope Control ... 88
G-1 Downloading the Necessary Code for your Embedded Target 89
G-2 Including the Code in your Embedded Target Project 90
G-3 Configuring the Code in your Embedded Target Project 90
G-4 Initializing the Oscilloscope control .. 91
G-5 Data Acquisition ... 91
4

Appendix H Bibliography ... 94

Index ... 96
5

Chapter

1

Introduction

μC/Probe is a Windows application designed to read and write the memory of any

embedded target processor during run-time. Memory locations are mapped to a set of

virtual controls and indicators placed on a dashboard. Figure 1-1 shows an overview of the

system and data flow.

Figure 1-1 μC/Probe Data Flow Diagram

Embedded System
Running μC/Probe-Target

Windows PC
Running μC/Probe

J-
Li

nk
 /

C
M

S
IS

-D
AP

 /
C

yp
re

ss
PS

oC

R
S

-2
32

TC
P

/IP

ELF File

µC/Probe Workspace

(2)

(1)

(3)

(4)

(5)

Symbol names
and addresses

Dashboard made out of
virtual controls mapped
to the target's symbols

[2]

[1]

[1] Including LAN, WAN, etc.
[2] Target Resident Code is

only required with TCP/IP
USB, and RS-232 interfaces.

U
S

B

6

Chapter 1
F1-1(1) You have to provide μC/Probe with an ELF file with DWARF-2, -3 or -4

debugging information. The ELF file is generated by your toolchain’s linker.

μC/Probe parses the ELF file and reads the addresses of each of the embedded

target’s symbols (i.e., global variables) and creates a catalog known as symbol

browser, which will be used by you during design-time to select the symbols

you want to display on your dashboard. This document provides information

on installing the μC/Probe Target C files and building the ELF file.

Alternatively, you can also provide a chip definition file that contains the chip’s

peripheral register addresses or provide your own custom XML based symbol

file for those cases when your toolchain cannot generate one of the supported

ELF formats.

F1-1(2) During design-time, you create a μC/Probe workspace using a Windows PC

and μC/Probe. You design your own dashboard by dragging and dropping

virtual controls and indicators onto a data screen. Each virtual control and

indicator needs to be mapped to an embedded target’s symbol by selecting it

from the symbol browser. Refer to the document μC/Probe User’s Manual for

more information on creating your own dashboard with μC/Probe.

F1-1(3) Before proceeding to the run-time stage, μC/Probe needs to be configured to

use one of the four communication interfaces: JTAG, USB, RS232 or TCP/IP. In

order to start the run-time stage, you click the Run button and μC/Probe starts

making requests to read the value of all the memory locations associated with

each virtual control and indicator (i.e., buttons and gauges respectively). At the

same time, μC/Probe sends commands to write the memory locations

associated with each virtual control (i.e., buttons on a click event).

F1-1(4) In the case of a reading request, the embedded target responds with the latest

value. In the case of a write command, the embedded target responds with an

acknowledgement. This document provides all the information you need in

regards to the firmware that implements the communication interface that runs

on the embedded target.

F1-1(5) μC/Probe parses the responses from the embedded target and updates the

virtual controls and indicators.
7

Please refer to the document μC/Probe User’s Manual for anything related to the Windows

PC side of the system.

This document only provides information about the firmware that resides on the Embedded

System which we will call μC/Probe Target C files.

The μC/Probe Target C files for communication purposes are only necessary in case you

want to communicate through USB, TCP/IP or RS-232.

If you are unsure of which communication interface to use, try the communication options

advisor in Figure 1-2:

Figure 1-2 Communication Options Advisor

J-Link is a USB-based JTAG emulator typically
available in-circuit or as an external probe for
debugging and flash programming purposes.

Do you have a J-Link available?

J-Link allows you to run
μC/Probe without any

special embedded
target resident code.

It is also possible to run
μC/Probe concurrently

with your Debugger
Software by sharing the

J-Link connection.

Download the
appropriate J-Link

drivers for your platform
from www.segger.com

Do you have WiFi or an
ethernet port available

in your board?

Do you have a running
TCP/IP stack in your

embedded target
code?

Is your TCP/IP
stack Micriμm's

μC/TCP-IP?

μC/TCP-IP comes
μC/Probe-ready.

All you need to do is
include a few C files
and call a function to
initialize the module.
This communication

interface yields one of
the fastest throughput

available.

Does your third-party
TCP/IP stack have

support for BSD
sockets?

The μC/Probe target
module can be ported to

other TCP/IP stacks
including WiFi modules

very easily.

Is your embedded
development tool

Embedded Workbench
from IAR Systems?

The Embedded
Workbench from

IAR Systems
is fully integrated with

μC/Probe.
It is a great way to
expand the scope

level of your
debugging

experience from the
C implementation
level provided by

C-SPY to the system
level provided by

μC/Probe.

Does your board
include an

RS-232 port?

The μC/Probe
module can be ported

to any UART and
hundreds of them are

already available
from Micriμm at no

cost.

Is your embedded
development IDE
based on Eclipse?

There is an Eclipse
plugin for μC/Probe that
creates a TCP/IP bridge

between the GDB
debugger and μC/Probe.

Unfortunately your
platform setup is not

supported by μC/Probe
at this time.

In order to have your
platform included in our
development schedule,

please send us an
e-mail to

info@micrium.com

You can purchase
Micriμm's μC/TCP-IP

stack. For more
information contact:
sales@micrium.com

Unless you can
modify your TCP/IP

stack to provide
UDP sockets for
typical functions
such as open(),

read() and write(),
you cannot use your
ethernet port or WiFi

module with
μC/Probe.

Refer to the μC/Probe
Target Manual for

instructions on where to
download, include and
initialize the μC/Probe

target module for
μC/TCP-IP.

Refer to the μC/Probe
Target Manual for

instructions on how to
port the μC/Probe target

module for TCP-IP.

Refer to the μC/Probe
User's Manual for

instructions on how to
use the C-SPY plugin

for μC/Probe.

Refer to the μC/Probe
Target Manual for

instructions on where
to download, port,

include and initialize
the μC/Probe target
module for RS-232.

Download the Eclipse
plugin for μC/Probe

from www.micrium.com

YES NO

YES NO

YES NO

YES NO

YES NO

YES NO

YES NO

YES NO

Do you have a
USB-Device port
available in your

board?

YES NO

Is your USB-Device
stack Micriμm's

μC/USB-D?

μC/USB-D comes
μC/Probe-ready.

All you need to do is
include a few C files and

call a function to
initialize the module.
This communication

interface yields one of
the faster throughput

available.

You can purchase
Micriμm's μC/USB-D

stack. For more
information contact:
sales@micrium.com

Refer to the μC/Probe
Target Manual for

instructions on where to
download, include and
initialize the μC/Probe

target module for
μC/USB-D.

YES NO
8

http://www.segger.com/jlink-software.html
mailto:sales@micrium.com?subject=uC/TCP-IP for uC/Probe Information
http://micrium.com/probe/EclipsePlugin.pdf
mailto:info@micrium.com?subject=uC/Probe: Unsupported Platform
http://www.micrium.com/probe/uC-Probe-UsersManual.pdf#page=42&view=Fit
http://www.micrium.com/probe/uC-Probe-UsersManual.pdf
mailto:sales@micrium.com?subject=uC/USB-Device for uC/Probe Information

Chapter 1
9

Chapter

2

μC/Probe-Target Modules

The μC/Probe-Target modules are the C files that reside on the embedded target and

respond to the requests from μC/Probe running on the Windows PC.

This chapter aims at providing a brief introduction to these modules.

The latest μC/Probe-Target modules can be downloaded from the μC/Probe Home Page at

http://www.micrium.com/probe.

The modules include the following groups of files:

■ Application Module

The Application Module includes your own embedded application C files. Some of

them will have to be tweaked to include some configuration macros and initialization

calls to the Target Communication Module.

See Chapter 3, “Configuring μC/Probe-Target” on page 14 and Chapter 4, “Initializing

μC/Probe-Target” on page 20 for more information on the tweaks you need to do to

your application code.

■ Target Communication Module

The Target Communication Module consists of the files from Micriμm and includes two

types of communication interfaces:

■ DCC (Debug Communication Channel) over JTAG

■ Generic (RS-232, TCP/IP, USB, etc.)
10

Chapter 2
The embedded target can potentially implement all the communication interfaces at the

same time and the Windows PC can have multiple instances of μC/Probe connected

through each of the supported interfaces.

The μC/Probe-Target modules are illustrated in the form of a flow diagram in Figure 2-1:

Figure 2-1 μC/Probe-Target Data Flow Diagram

OR

OR

OR

OR

OR

AND / OR

TCP/IP

R
S-

2
3

2

Windows PC
Running µC/Probe

Embedded System running µC/Probe Target

(1)

(2)

(3)

(4)

(5)

(7)

(8)

(6)

OR

AND / OR

U
S

B

(9)

(10)
11

F2-1(1) If you are planning to use one of the Generic interfaces such as USB, RS-232 or

TCP/IP, then Micriμm provides code that is common for all.

F2-1(2) The generic communication module relies on a set of macros that specify its

configuration. This configuration is specific to your application, therefore, we

recommend to copy the file probe_com_cfg.h over to your application

module or copy and paste the macros into your own application configuration

header file (i.e., app_cfg.h). See Chapter 3, “Configuring μC/Probe-Target” on

page 14 for more information on this configuration file.

F2-1(3) μC/Probe has been designed to work best with an RTOS, however, the Generic

module source files are OS-independent and an abstraction layer allows you to

select between μC/OS-III, μC/OS-II, the kernel of your choice or no OS at all.

F2-1(4) If the communication interface of your choice is RS-232 then the OS layers in

this module implement a series of wrapper functions for two kernel objects:

■ The RS-232 task that waits for packets to be received and formulates

responses.

■ A semaphore that provides the signaling mechanism for the reception of

packets.

F2-1(5) The RS-232 module source files are OS-independent and implement the

Reception and Transmission state machines responsible for the parsing of

packets and the formulation of responses.

F2-1(6) The RS-232 module source files are also independent of the RS-232 driver.

The RS-232 driver is implemented in the Ports module and most of the time

Micriμm has a port for almost every semiconductor’s part number. In case a

port is not available for your part #, you will have to implement nine functions

in this ports module. See Appendix A, “Porting the RS-232 Communication

Module” on page 38 for more information.
12

Chapter 2
F2-1(7) The TCP/IP communication interface provides a faster throughput and longer

connection distances. In a similar manner to the RS-232 module, this module is

designed with a task model that makes use of semaphores. These kernel

objects are abstracted by this OS layer.

F2-1(8) This interface requires TCP/IP sockets that support the UDP protocol. If you

are using Micriμm’s TCP/IP stack, then this module is ready to go. If you are

using any other TCP/IP stack, then you need to tweak the TCP/IP module’s

source files, but chances are, since this module is written using μC/TCP-IP

Berkley (BSD) sockets, that the changes would be minimum. See Appendix A,

“Porting the TCP/IP Communication Module” on page 48 for more information.

F2-1(9) The USB communication interface provides a fast throughput. In a similar

manner to the RS-232 and TCP/IP module, this module is designed with a task

model that makes use of semaphores. These kernel objects are abstracted by

this OS layer.

F2-1(10) This interface requires Micriμm’s μC/USB-Device stack and its Vendor class,

which are sold separately. Please contact us at sales@micrium.com for more

details.
13

Chapter

3

Configuring μC/Probe-Target

This chapter aims at providing a detailed description of the tweaks you need to do to your

application level code in order to run the μC/Probe-Target modules.

3-1 CONFIGURATION SETTINGS

The generic communication module that includes the USB, RS-232 and TCP/IP interfaces

offers an abstraction layer for application level configuration. The configuration file,

regardless of the communication interface you choose is the same.

There is a template configuration file located at the path illustrated in Figure 3-1:

Figure 3-1 μC/Probe-Target Configuration Template

Since the settings are specific to an application, you can either move this file to your

application folder or copy and paste the contents to your application master configuration

file (i.e., app_cfg.h).

Please keep in mind that future releases of μC/Probe-Target might include more

configuration options and your probe_com_cfg.h may require modification should

enhancements to the μC/Probe-Target code occur.

Micrium
Software

uC Probe
Target

Communication
Generic

Cfg
Template

probe_com_cfg.h
14

Chapter 3
3-1-1 GENERAL CONFIGURATION SETTINGS

Listing 3-1 shows the macros that enable or disable the two generic communication

interfaces. Use the definitions from the μC/LIB module DEF_ENABLED and DEF_DISABLED to
control their availability:

Listing 3-1 probe_com_cfg.h: Enabling and disabling the generic communication interfaces

Listing 3-2 shows the general communication settings that apply to RS-232, USB and TCP/IP:

Listing 3-2 probe_com_cfg.h: General communication configuration

L3-2(1) These couple of settings control the maximum receive and transmit packet

sizes, respectively. Larger maximum packet sizes will result in more efficient

communication with better throughput. The largest receive and transmit

packets will be of comparable size, typically.

/*
**
* COMMUNICATION METHOD CONFIGURATION
**
*/

#define PROBE_COM_CFG_RS232_EN DEF_ENABLED /* RS-232 availability. */
#define PROBE_COM_CFG_TCPIP_EN DEF_ENABLED /* TCP/IP availability. */
#define PROBE_COM_CFG_USB_EN DEF_ENABLED /* USB availability. */

#define PROBE_COM_CFG_RX_MAX_SIZE 256 /* Config max receive packet size */ (1)

#define PROBE_COM_CFG_TX_MAX_SIZE 256 /* Config max transmit packet size */

#define PROBE_COM_CFG_WR_REQ_EN DEF_ENABLED /* Config write req availability */ (2)

#define PROBE_COM_CFG_STR_REQ_EN DEF_ENABLED /* Config string req availability */ (3)

#define PROBE_COM_CFG_STR_IN_BUF_SIZE 128 /* Config size of string input buf */ (4)

#define PROBE_COM_CFG_STR_OUT_BUF_SIZE 2048 /* Config size of string output buf */ (5)

#define PROBE_COM_CFG_TERMINAL_REQ_EN DEF_ENABLED /* Config terminal availability */ (6)

#define PROBE_COM_CFG_STAT_EN DEF_ENABLED /* Config statistics/counters */ (7)
15

Configuration Settings
L3-2(2) The setting PROBE_COM_CFG_WR_REQ_EN controls whether write requests are

available. If disabled, the code to handle write requests (which allows the

Windows application to write target memory locations) will not be included.

L3-2(3) The setting PROBE_COM_CFG_STR_REQ_EN controls whether string requests are

available. If disabled, the code to handle string requests will not be included,

and the string read/write interface functions will not be available. The string

request functionality allows the target to write strings to the Windows

application (perhaps indicating program status or event occurrence) or read

strings from the Windows application (perhaps entered by the user to control

the target).

L3-2(4) If string requests are enabled, the size of the input buffer, in bytes, must also be

configured in PROBE_COM_CFG_STR_IN_BUF_SIZE.

L3-2(5) If string requests are enabled, the size of the output buffer, in bytes, must also

be configured in PROBE_COM_CFG_STR_OUT_BUF_SIZE.

L3-2(6) The setting PROBE_COM_CFG_TERMINAL_REQ_EN controls whether terminal

requests are available. If disabled, the code to handle terminal requests will not

be included, and the terminal output interface function will not be available.

The terminal request functionality allows the Windows application to execute

terminal commands on the target (e.g., standard UNIX commands like cd or

cat) and receive output generated by the execution.

L3-2(7) The setting PROBE_COM_CFG_STAT_EN controls whether statistics and counters

will be maintained.
16

Chapter 3
3-1-2 RS-232 CONFIGURATION SETTINGS

The same configuration file probe_com_cfg.h contains the settings that modify the

behavior of the RS-232 module. Some of the code is shown in Listing 3-3:

Listing 3-3 probe_com_cfg.h: RS-232 Communication Settings

L3-3(1) These two settings determine the sizes of the buffers used for packets, one for

receive and another for transmit. These are, effectively, the sizes of the

maximum receivable and transmittable packets; consequently these should

generally be configured to the maximum packet sizes.

L3-3(2) The setting PROBE_RS232_CFG_PARSE_TASK_EN determines whether an RS-232

task will be created to parse received packets and generate replies. Otherwise,

packets will be parsed at interrupt-level.

L3-3(3) If the RS-232 parsing task is enabled, these two settings determine the priority

and stack size of the task.

L3-3(4) The setting PROBE_RS232_CFG_COMM_SEL determines which UART or serial

communication interface will be used for communication.

#define PROBE_RS232_CFG_RX_BUF_SIZE PROBE_COM_CFG_RX_MAX_SIZE /* Config Rx buf size */ (1)

#define PROBE_RS232_CFG_TX_BUF_SIZE PROBE_COM_CFG_TX_MAX_SIZE /* Config Tx buf size */

#define PROBE_RS232_CFG_PARSE_TASK_EN DEF_ENABLED /* Enable parsing task */ (2)

#define PROBE_RS232_CFG_TASK_PRIO 12 /* Config task priority */ (3)

#define PROBE_RS232_CFG_TASK_STK_SIZE 128 /* Config task stack */

#define PROBE_RS232_UART_0 1
#define PROBE_RS232_UART_1 2
#define PROBE_RS232_UART_2 3
#define PROBE_RS232_UART_3 4
#define PROBE_RS232_UART_4 5
#define PROBE_RS232_UART_5 6
#define PROBE_RS232_UART_6 7
#define PROBE_RS232_UART_6 8
#define PROBE_RS232_UART_DBG 63

#define PROBE_RS232_CFG_COMM_SEL PROBE_RS232_UART_1 /* Config UART selection */ (4)
17

Configuration Settings
3-1-3 TCP/IP CONFIGURATION SETTINGS

The same configuration file probe_com_cfg.h contains the settings that modify the

behavior of the TCP/IP module. The code related to TCP/IP is shown in Listing 3-4:

Listing 3-4 probe_com_cfg.h: TCP/IP Communication Settings

L3-4(1) These two settings determine the sizes of the buffers used for packets, one for

receive and another for transmit. These are, effectively, the sizes of the

maximum receivable and transmittable packets; consequently these should

generally be configured to the maximum packet sizes.

L3-4(2) The μC/Probe TCP/IP interface requires an RTOS and a task is created by

default to parse received packets and generate replies. These two settings

determine the priority and stack size of the task.

L3-4(3) The setting PROBE_TCPIP_CFG_PORT determines which port number the UDP

server on the embedded target will be listening from.

#define PROBE_TCPIP_CFG_RX_BUF_SIZE PROBE_COM_CFG_RX_MAX_SIZE /* Config RX buf size */ (1)

#define PROBE_TCPIP_CFG_TX_BUF_SIZE PROBE_COM_CFG_TX_MAX_SIZE /* Config Tx buf size */

#define PROBE_TCPIP_CFG_TASK_PRIO 13 /* Config TCP/IP task priority*/ (2)

#define PROBE_TCPIP_CFG_TASK_STK_SIZE 256 /* Config TCP/IP task stack */

#define PROBE_TCPIP_CFG_PORT 9930 /* Config server port */ (3)
18

Chapter 3
3-1-4 USB CONFIGURATION SETTINGS

The same configuration file probe_com_cfg.h contains the settings that modify the

behavior of the USB module. The code related to USB is shown in Listing 3-5:

Listing 3-5 probe_com_cfg.h: USB Communication Settings

L3-5(1) These two settings determine the sizes of the buffers used for packets, one for

receive and another for transmit. These are, effectively, the sizes of the

maximum receivable and transmittable packets; consequently these should

generally be configured to the maximum packet sizes.

L3-5(2) These two settings determine the amount of time in milliseconds the USB

device stack is willing to wait for a response after receiving and transmitting

data respectively.

L3-5(3) The μC/Probe TCP/IP interface requires an RTOS and a task is created by

default to parse received packets and generate replies. These two settings

determine the priority and stack size of the task.

L3-5(4) This setting makes the μC/Probe USB communication module responsible for

initializing the μC/USB-Device stack.

 /* Set Rx and Tx buffer sizes. */ (1)

#define PROBE_USB_CFG_RX_BUF_SIZE PROBE_COM_CFG_RX_MAX_SIZE
#define PROBE_USB_CFG_TX_BUF_SIZE PROBE_COM_CFG_TX_MAX_SIZE

 /* Set Rx and Tx timeouts. */ (2)

#define PROBE_USB_CFG_RX_TIMEOUT_MS 100u
#define PROBE_USB_CFG_TX_TIMEOUT_MS 100u

#define PROBE_USB_CFG_TASK_PRIO 12 /* Set task priority. */ (3)

#define PROBE_USB_CFG_TASK_STK_SIZE 512 /* Set task stack size. */

#define PROBE_USB_CFG_INIT_STACK DEF_TRUE /* uC/Probe will init USB stack. */ (4)
19

Chapter

4

Initializing μC/Probe-Target

If using a generic communication source such as RS-232, USB or TCP/IP, then first the

Generic module and then the RS-232, or the USB and, or the TCP/IP interfaces must be

initialized from your application level code prior to using μC/Probe as shown in Code

Listing 4-1:

Listing 4-1 Initializing μC/Probe-Target

L4-1(1) Initialize the generic communications module from your application code. This

module must be initialized first.

L4-1(2) Initialize the RS-232 communication module from your application code. The

argument of ProbeRS232_Init() should be the communication baud rate.

L4-1(3) Enable RS-232 receive interrupts. This step must be performed so that packets

may be received.

L4-1(4) Initialize the USB communications module by calling the function

ProbeUSB_Init() which in turn will initialize the Vendor class among other

things.

ProbeCom_Init(); /* Initialize the Generic module */ (1)

ProbeRS232_Init(115200); /* Initialize the RS-232 interface */ (2)
ProbeRS232_RxIntEn(); /* Initialize the RS-232 Rx interrupts */ (3)

ProbeUSB_Init(dev_nbr,
 cfg_hs_nbr,
 cfg_fs_nbr); /* Initialize the USB interface */ (4)

ProbeTCPIP_Init(); /* Initialize the TCP/IP interface */ (5)
20

Chapter 4
As a reference, you can see the application template file at

$\Micrium\Software\uC-Probe\Target\Communication\Generic\
 USB\App\app_usbd.c

L4-1(5) Initialize the TCP/IP communication module. This function call will create a

UDP listening socket on the port configured in probe_com_cfg.h. A network

connection between the target and the PC is required.
21

Chapter

5

Building μC/Probe-Target

One of the key elements of the system is the embedded target’s output file known as ELF

file. The ELF file contains a list of all the global variables in your embedded system

including the name, data type and address location.

μC/Probe uses this ELF file to map each virtual control and indicator to the variable of your

choice.

This chapter describes how to build a valid ELF file that is compatible with μC/Probe.

The process of building an ELF file involves the toolchain of your choice, your application C

files, the μC/Probe-Target and other support C files from Micriμm and in some cases, any

other third-party pre-compiled C objects or libraries as illustrated in Figure 5-1:

Figure 5-1 Building an ELF file

ELF Header

Program Header
Table

.text

.rodata

.data

Section Header
Table

. . .

ToolchainMicriµm Support
C Files

Your Application
C Files

Other pre-compiled C
objects and libraries

Preprocessor
Compiler

and
Assembler Linker

ELF File
Symbol names
and addresses

(1)

(3)

(4) (5)

(6)

(7)

µC/Probe Target
C Files

C

C

C

(2)
22

Chapter 5
F5-1(1) The support C files from Micriμm include the μC/LIB and μC/CPU modules.

These modules implement and define a series of functions, data types and

macros required by the μC/Probe-Target C files. Regardless of the

communication interface you choose, these files must be included.

F5-1(2) The μC/Probe-Target C files from Micriμm are the files that we discussed in the

previous Chapter 2, “μC/Probe-Target Modules” on page 10. These files are the

code that includes the communication state machine and drivers for all the

supported communication interfaces.

F5-1(3) Your application code does not require major changes to make it work with

μC/Probe. It does not require an RTOS either. All you need to do is a couple of

simple things:

■ Make sure that any variable that you want to display or control from a

μC/Probe workspace is declared globally. Any data type goes; from

booleans to data structures and everything in between, including arrays.

■ Make some calls to initialize the μC/Probe-Target code. Chapter 4,

“Initializing μC/Probe-Target” on page 20 shows an example of how to

initialize the Target Communication module from the application level.

F5-1(4) Your toolchain’s C preprocessor provides the ability to:

■ Include the new header files from Micriμm’s μC/Probe-Target C Files.

■ Do conditional compilation depending on the communication interface of

your choice.

■ Expand macros to configure settings such as buffer sizes that affect the level

of performance and footprint.

See Chapter 3, “Configuring μC/Probe-Target” on page 14 for more information

on configuring your application code for the C preprocessor.
23

Micrium’s Support Files
F5-1(5) Your toolchain’s C compiler needs to be configured with the new include

directories from Micriμm’s μC/LIB, μC/CPU and μC/Probe-Target C Files. See

Chapter 5, “Micrium’s Support Files” on page 24 and Chapter 5,

“μC/Probe-Target C Files” on page 28 to learn how to configure your C

compiler.

F5-1(6) In case your embedded application links to other third-party pre-compiled C

objects or libraries, know that as long as there is symbolic information in the

DWARF-2 format for them, you will also be able to display and control them

from μC/Probe. This group may include the OS of your choice. If you chose

Micriμm’s μC/OS-II or μC/OS-III then refer to the books from Micriμm Press for

more information on building a μC/OS-based application. See Appendix H,

“Bibliography” on page 94.

F5-1(7) Finally, the toolchain of your choice needs to be capable of generating an ELF

file that includes symbolic information for debug purposes in the DWARF-2, -3

or -4 format. That is usually achieved by configuring your toolchain’s linker to

output debug information. See Appendix C, “ELF Files with DWARF Debug

Information” on page 58 for examples of three different toolchains.

5-1 MICRIUM’S SUPPORT FILES

μC/Probe-Target is designed to work best with an OS and in the case of a TCP/IP interface,

because of the nature of TCP/IP, an OS is required.

Describing the compilation process for μC/OS-II and μC/OS-III is beyond the scope of this

document, but if you have a sample project for either of these, then you have all the support

files from Micriμm that you need for μC/Probe-Target, including μC/CPU and μC/LIB.

In case you are planning to use a different OS or no OS at all, the additional support files

from Micriμm that you will need to build the μC/Probe-Target are:

■ μC/CPU

■ μC/LIB

See Appendix H, “Bibliography” on page 94, for more information on μC/OS-II and μC/OS-III.
24

Chapter 5
5-1-1 μC/CPU

The μC/CPU module defines portable data-types and critical section macros for specific

processor architectures and compilers. The μC/Probe-Target modules make reference to the

portable data types defined by the μC/CPU module, therefore, this module is required and

the files you need to include in your compilation process are shown in Figure 5-2.

Figure 5-2 Micriμm Support Files: μC/CPU Files to Compile

F5-2(1) The μC/CPU core files are architecture and toolchain independent. There is no

need to edit these files, just need to include the following path into your

toolchain’s preprocessor include paths: $/Micrium/Software/uC-CPU.

F5-2(2) The <Architecture> folder is of course named according to the CPU

architecture. For example, this folder could be named ARM-Cortex-A9. The

same thing goes for the <Toolchain> folder. Example names for this folder are

GNU and IAR. The files under these folders are of course CPU Architecture and

Toolchain dependent. If the CPU architecture of your choice and the toolchain

of your choice is listed in these folders, then you are not required to do

anything to the files except for:

■ Insert the following path into your toolchain’s preprocessor include paths

$/Micrium/Software/uC-CPU/<Architecture>/<Toolchain>

Micrium
Software

uC CPU
cpu_core.c
cpu_core.h
cpu_def.h

<Architecture>
<Toolchain>

cpu.h
cpu_a.asm
cpu_c.c

Cfg
Template

cpu_cfg.h

(1)

(2)

(3)
25

Micrium’s Support Files
■ Include the header file cpu.h using the preprocessing directive #include
as shown in Listing 5-1:

Listing 5-1 Including the μC/CPU module

F5-2(3) The μC/CPU module refers to a series of configuration macros that modify the

behavior of the module to fit a specific application. Therefore, a configuration

template is provided for you to configure the module from the application

level. Either copy the contents of this file into your application’s configuration

file (i.e., app_cfg.h), or place the file itself into your application folder.

5-1-2 μC/LIB

The μC/LIB module replaces some of the C standard library functions in order to simplify

third-party certification. The μC/Probe-Target modules make reference to the functions and

macros defined by the μC/LIB module, therefore, this module is required and the files you

need to include in your compilation process are shown in Figure 5-3:

Figure 5-3 Micriμm Support Files: μC/LIB files to compile

#include <cpu.h>

Micrium
Software

uC LIB
lib_ascii.c
lib_ascii.h
lib_def.h
lib_math.c
lib_math.h
lib_mem.c
lib_mem.h
lib_str.c
lib_str.h

Cfg
Template

lib_cfg.h

Ports
<Architecture>

<Toolchain>
lib_mem_a.asm

(1)

(2)

(3)
26

Chapter 5
F5-3(1) The μC/LIB core files are architecture and toolchain independent. No need to

edit the files, just need to do the following two things:

■ Insert the path $/Micrium/Software/uC-LIB into your toolchain’s

preprocessor include paths.

■ Include the header files lib_def.h, lib_ascii.h, lib_math.h,
lib_mem.h and lib_str.h by using the preprocessing directive #include
as shown in Code Listing 5-2.

Listing 5-2 Including the μC/LIB module

F5-3(2) Similar to the μC/CPU module, the μC/LIB module makes reference to a series

of configuration macros that modify the behavior of the module to fit a specific

application. Therefore, a configuration template is provided for you to

configure the module from the application level. Either copy the contents of

this file into your application’s configuration file (i.e., app_cfg.h) or place the

file itself into your application folder.

F5-3(3) The Ports folder contains an <Architecture> folder that is named according

to the CPU architecture. For example, this folder could be named

ARM-Cortex-A9. The same convention is used for the <Toolchain> folder.

Example names for this folder are GNU and IAR. The files under these folders

are of course CPU Architecture and Toolchain dependent. If the CPU

architecture of your choice and the toolchain of your choice are listed in these

folders, then you are not required to do anything to the files except for:

■ Insert the following path into your toolchain’s preprocessor include paths

$/Micrium/Software/uC-LIB/Ports/<Architecture>/<Toolchain>

#include <lib_def.h>
#include <lib_ascii.h>
#include <lib_math.h>
#include <lib_mem.h>
#include <lib_str.h>
27

μC/Probe-Target C Files
5-2 μC/PROBE-TARGET C FILES

5-2-1 RS-232 INTERFACE

If you choose to interface μC/Probe over a serial RS-232 interface, then your compilation

process needs to include not only the required Micriμm support modules μC/CPU and

μC/LIB but also the files illustrated in Figure 5-4 with a few caveats depending on the OS of

your choice.

Figure 5-4 μC/Probe-Target Modules: RS-232 files to compile

Micrium
Software

uC Probe
Target

Communication
Generic

Cfg
Template

probe_com_cfg.h

OS
None

probe_com_os.c

uCOS II
probe_com_os.c

uCOS III
probe_com_os.c

RS 232
OS

None
probe_rs232_os.c

uCOS II
probe_rs232_os.c

uCOS III
probe_rs232_os.c

Ports
<Semiconductor>

<Part#>
probe_rs232c.c
probe_rs232c.h

Source
probe_rs232.c
probe_rs232.h

Source
probe_com.c
probe_com.h

(1)

(2)

(3)

(4)

(5)

(6)
28

Chapter 5
F5-4(1) The RS-232 module makes reference to a series of configuration macros such as

buffer sizes, that modify the behavior of the module to fit a specific application.

Therefore, a configuration template is provided for you to configure the

module from the application level. Either copy the contents of this file into your

application’s configuration file (i.e., app_cfg.h) or place the file itself into your

application folder.

F5-4(2) The OS abstraction layers in this module implement a series of wrapper

functions for two kernel objects:

■ The RS-232 task that waits for packets to be received and formulates

responses.

■ A semaphore that provides the signaling mechanism for the reception of

packets.

Choose one of these 3 files depending on the OS of your choice.

F5-4(3) The OS layers in this module allow the RS-232 drivers to be OS-independent.

Choose one of these 3 files depending on the OS of your choice.

F5-4(4) The RS-232 drivers are most likely available from Micriμm, otherwise see the

Appendix A, “Porting the RS-232 Communication Module” on page 38 for more

information on porting RS-232. If your semiconductor manufacturer and part

number is available from Micriμm, all you need to do is two things:

■ Insert the following path into your toolchain’s preprocessor include paths:

$/Micrium/Software/uC-Probe/Target/Communication/
 Generic/RS-232/Ports/<Semiconductor>/<Part#>

■ Include the header file probe_rs232c.h by using the preprocessing

directive #include as shown in Listing 5-3

Listing 5-3 Including the RS-232 driver

#include <probe_rs232c.h>
29

μC/Probe-Target C Files
F5-4(5) The RS-232 module source files are OS-independent and implement the

Reception and Transmission state machines responsible for the packet parsing

and formulation of responses. No need to change these files. All you need to

do is two things:

■ Insert the following path into your toolchain’s preprocessor include paths:

$/Micrium/Software/uC-Probe/Target/Communication/
 Generic/RS-232/Source

■ Include the header file probe_rs232.h by using the preprocessing

directive #include as shown in Listing 5-4:

Listing 5-4 Including the RS-232 module

F5-4(6) This module contains the code that is common not only for RS-232 but also for

any other communication interface such as USB and TCP/IP. There is no need

to make any changes to these files, all you need to do is two things:

■ Insert the following path into your toolchain’s preprocessor include paths:

$/Micrium/Software/uC-Probe/Target/Communication/
 Generic/Source

■ Include the header file probe_com.h by using the preprocessing directive

#include as shown in Listing 5-5:

Listing 5-5 Including the Generic module

#include <probe_rs232.h>

#include <probe_com.h>
30

Chapter 5
5-2-2 TCP/IP INTERFACE

If you choose to interface your embedded target with μC/Probe over a TCP/IP interface,

then your compilation process needs to include not only the required Micriμm support

modules μC/CPU and μC/LIB but also an OS because of the nature of TCP/IP.

A TCP/IP stack that supports UDP sockets (such as Micriμm’s μC/TCP-IP) is required.

Without taking into account the OS and TCP/IP stack, the files you need to compile for the

TCP/IP interface are illustrated in Figure 5-5, with a few caveats depending on the OS of

your choice:

Figure 5-5 μC/Probe-Target Modules: TCP/IP files to compile

Micrium
Software

uC Probe
Target

Communication
Generic

Cfg
Template

probe_com_cfg.h

OS
None

probe_com_os.c

uCOS II
probe_com_os.c

uCOS III
probe_com_os.c

Source
probe_com.c
probe_com.h

TCPIP
OS

uCOS II
probe_tcpip_os.c

uCOS III
probe_tcpip_os.c

Source
probe_tcpip.c
probe_tcpip.h

(1)

(2)

(3)

(4)

(5)
31

μC/Probe-Target C Files
F5-5(1) Similarly to other modules, the TCP/IP module makes reference to a series of

configuration macros such as buffer sizes, that modify the behavior of the

module to fit a specific application. Therefore, a configuration template is

provided for you to configure the module from the application level. Either

copy the contents of this file into your application’s configuration file (i.e.,

app_cfg.h) or place the file itself into your application folder.

F5-5(2) The OS layers in this module implement a series of wrapper functions for some

semaphores used by the generic communications module.

Choose one of these three files depending on the OS of your choice.

F5-5(3) The μC/Probe generic communications module implements the parsing of

requests and formulation of responses that are common to not only the TCP/IP

interface but also, all the rest of communication interfaces.

There is no need to make any changes to these files, all you need to do is two

things:

■ Insert the following path into your toolchain’s preprocessor include paths:

$/Micrium/Software/uC-Probe/Target/Communication/
 Generic/Source

■ Include the header file probe_com.h by using the preprocessing directive

#include as shown in Listing 5-6:

Listing 5-6 Including the Generic module

F5-5(4) The OS layers in this module implement a series of wrapper functions for two

kernel objects:

■ The TCP/IP task that waits for packets to be received and formulates

responses.

#include <probe_com.h>
32

Chapter 5
■ A semaphore that provides the signaling mechanism for the reception of

packets.

Choose one of these three files depending on the OS of your choice.

F5-5(5) The TCP/IP module source files are OS-independent and implement the

Reception and Transmission state machines responsible for the packet parsing

and formulation of responses. No need to change these files. All you need to

do is two things:

■ Insert the following path into your toolchain’s preprocessor include paths:

$/Micrium/Software/uC-Probe/Target/Communication/
 Generic/TCPIP/Source

■ Include the header file probe_tcpip.h by using the preprocessing

directive #include as shown in Listing 5-7:

Listing 5-7 Including the TCP/IP module

5-2-3 USB INTERFACE

If you choose to interface your embedded target with μC/Probe over a USB interface, then

your compilation process needs to include not only the required Micriμm support modules

μC/CPU and μC/LIB but also an OS because of the nature of USB and the μC/USB-Device

stack.

A USB device stack that supports a Bulk In and Out endpoints (such as Micriμm’s

μC/USB-Device) is required. Without taking into account the OS and USB-Device stack, the

files you need to compile for the USB interface are illustrated in Figure 5-5, with a few

caveats depending on the OS of your choice:

#include <probe_tcpip.h>
33

μC/Probe-Target C Files
Figure 5-6 μC/Probe-Target Modules: USB files to compile

F5-6(1) Similarly to other modules, the USB module makes reference to a series of

configuration macros such as buffer sizes, that modify the behavior of the

module to fit a specific application. Therefore, a configuration template is

provided for you to configure the module from the application level. Either

copy the contents of this file into your application’s configuration file (i.e.,

app_cfg.h) or place the file itself into your application folder.

F5-6(2) The OS layers in this module implement a series of wrapper functions for some

semaphores used by the generic communications module.

Micrium
Software

uC Probe
Target

Communication
Generic

Cfg
Template

probe_com_cfg.h

OS
None

probe_com_os.c

uCOS II
probe_com_os.c

uCOS III
probe_com_os.c

Source
probe_com.c
probe_com.h

USB
App

app_usbd.c

OS
uCOS II

probe_usb_os.c

uCOS III
probe_usb_os.c

Source
probe_usb.c
probe_usb.h

(1)

(2)

(3)

(4)

(5)

(6)
34

Chapter 5
Choose one of these three files depending on the OS of your choice.

F5-6(3) The μC/Probe generic communications module implements the parsing of

requests and formulation of responses that are common to not only the USB

interface but also, all the rest of communication interfaces.

There is no need to make any changes to these files, all you need to do is two

things:

■ Insert the following path into your toolchain’s preprocessor include paths:

$/Micrium/Software/uC-Probe/Target/Communication/
 Generic/Source

■ Include the header file probe_com.h by using the preprocessing directive

#include as shown in Listing 5-6:

Listing 5-8 Including the Generic module

F5-6(4) The USB interface for μC/Probe requires Micriμm’s USB device stack μC/USBD

and its Vendor class. You can use this file as a reference on how to initialize the

USB Device stack and its Vendor class.

F5-6(5) The OS layers in this module implement a series of wrapper functions for two

kernel objects:

■ The USB task that waits for packets to be received and formulates

responses.

■ A semaphore that provides the signaling mechanism for the reception of

packets.

Choose one of these three files depending on the OS of your choice.

#include <probe_com.h>
35

μC/Probe-Target C Files
F5-6(6) The USB module source files are OS-independent and implement the

Reception and Transmission state machines responsible for the packet parsing

and formulation of responses. No need to change these files. All you need to

do is two things:

■ Insert the following path into your toolchain’s preprocessor include paths:

$/Micrium/Software/uC-Probe/Target/Communication/
 Generic/USB/Source

■ Include the header file probe_usb.h by using the preprocessing directive

#include as shown in Listing 5-7:

Listing 5-9 Including the USB module

#include <probe_usb.h>
36

Chapter 5
37

Appendix

A

Porting μC/Probe-Target

Most of the time Micriμm will have a μC/Probe-Target sample application for your

evaluation board, in which case you will not have to do anything. In other cases, you have

to edit some of the module files to accommodate your particular processor, evaluation

board and TCP/IP stack.

This appendix provides instructions for porting the RS-232 and TCP/IP communication

interfaces to any other evaluation board, and in the case of the TCP/IP interface to other

TCP/IP stack.

A-1 PORTING THE RS-232 COMMUNICATION MODULE

In order to port the RS-232 interface, you have to deal with the files illustrated in Figure A-1:

Figure A-1 μC/Probe-Target RS-232 port files

The functions implemented by the RS-232 driver are shown in Table A-1:

Micrium
Software

uC Probe
Target

Communication
Generic

RS 232
Ports

<Semiconductor>
<Part#>

probe_rs232c.c
probe_rs232c.h
38

Appendix A
Table A-1 RS-232 communication module port functions

Each of the port functions will be described in this section and presented in alphabetical

order. The following information is provided for each entry:

■ A brief description of the function

■ The function prototype

■ The filename of the source code

■ The #define constant required to enable code for the function

■ A description of the arguments passed to the function

■ A description of any returned value(s)

■ Specific notes and warnings regarding use of the function

Function Name Description

ProbeRS232_InitTarget() Initialize hardware.

ProbeRS232_RxIntDis() Disable receive interrupts.

ProbeRS232_RxIntEn() Enable receive interrupts.

ProbeRS232_TxIntDis() Disable transmit interrupts.

ProbeRS232_TxIntEn() Enable transmit interrupts.

ProbeRS232_Tx1() Transmit one byte.

ProbeRS232_RxISRHandler() Handle receive interrupts.

ProbeRS232_TxISRHandler() Handle transmit interrupts.

ProbeRS232_RxTxISRHandler() Handle receive and transmit interrupts.
39

A-1-1 ProbeRS232_InitTarget()

void ProbeRS232_InitTarget (CPU_INT32U baud_rate);

This function is called to initialize the embedded target’s UART or serial communication

interface at the specified baud rate.

ARGUMENTS

baud_rate Serial baud rate in units of bits-per-second.

RETURNED VALUES

None.

NOTES/WARNINGS

Although the baud rate used may vary from application to application or target to target,

other communication settings are constant. The hardware must always be configured for the

following:

■ No parity

■ One stop bit

■ Eight data bits

Neither receive nor transmit interrupts should be enabled by this function.

File Called from Code enabled by

probe_rs232c.c Application: ProbeRS232_Init() N/A
40

Appendix A
A-1-2 ProbeRS232_RxIntDis()

void ProbeRS232_RxIntDis (void);

This function disables the RS-232 receive interrupt source.

The application can start, pause and restart packet reception by enabling, disabling and

re-enabling the UART or serial communication interface’s receive interrupts.

ARGUMENTS

None.

RETURNED VALUES

None.

NOTES/WARNINGS

If supported and, or required by hardware, this function may also need to disable the

receive overrun interrupt source.

File Called from Code enabled by

probe_rs232c.c Application N/A
41

A-1-3 ProbeRS232_RxIntEn()

void ProbeRS232_RxIntEn (void);

This function enables the RS-232 receive interrupt source.

The application can start, pause and restart packet reception by enabling, disabling and

re-enabling the UART or serial communication interface’s receive interrupts.

ARGUMENTS

None.

RETURNED VALUES

None.

NOTES/WARNINGS

If supported and, or required by hardware, this function may also need to enable the

receive overrun interrupt source.

File Called from Code enabled by

probe_rs232c.c Application N/A
42

Appendix A
A-1-4 ProbeRS232_TxIntDis()

void ProbeRS232_TxIntDis (void);

This function disables the RS-232 transmit complete interrupt source.

The RS-232 module relies on a transmit complete or transmit ready interrupt to know when

a new byte can be safely transmitted. After transmitting the final byte of a packet, transmit

interrupts are disabled.

ARGUMENTS

None.

RETURNED VALUES

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

probe_rs232c.c ProbeRS232_TxHandler()
ProbeRS232_TxStart()

N/A
43

A-1-5 ProbeRS232_TxIntEn()

void ProbeRS232_TxIntEn (void);

This function enables the RS-232 transmit complete interrupt source.

The RS-232 module relies on a transmit complete or transmit ready interrupt to know when

a new byte can be safely transmitted. Transmit complete interrupts are enabled after

transmitting the first byte of a packet and remain enabled until the final byte of the packet

has been transmitted.

ARGUMENTS

None.

RETURNED VALUES

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

probe_rs232c.c ProbeRS232_TxHandler()
ProbeRS232_TxStart()

N/A
44

Appendix A
A-1-6 ProbeRS232_Tx1()

void ProbeRS232_Tx1 (CPU_INT08U c);

This function transmits one byte via RS-232.

ARGUMENTS

c The byte to transmit.

RETURNED VALUES

None.

NOTES/WARNINGS

None.

File Called from Code enabled by

probe_rs232c.c ProbeRS232_TxHandler() N/A
45

A-1-7 ProbeRS232_Rx/Tx/RxTxISRHandler()

void ProbeRS232_RxISRHandler (void);
void ProbeRS232_TxISRHandler (void);
void ProbeRS232_RxTxISRHandler (void);

Three possible ISR handlers are prototyped in the RS-232 communication module header

file, although one or more may be declared empty.

On a platform that locates receive and transmit interrupts on separate vectors the following

two functions must be implemented:

■ ProbeRS232_RxISRHandler()

■ ProbeRS232_TxISRHandler()

Otherwise, the following function should handle the combined interrupts:

■ ProbeRS232_RxTxISRHandler()

Upon a receive interrupt, the byte should be read from the hardware receive data register

and passed to the function ProbeRS232_RxHandler(). Upon a transmit complete interrupt

(or, on some MCUs/MPUs, transmit data register empty), the RS-232 communication core

should be informed via a call to ProbeRS232_TxHandler(). Listing 3-2 shows an example

of a combined receive and transmit handler.

ARGUMENTS

None.

RETURNED VALUES

None.

File Called from Code enabled by

probe_rs232c.c ProbeRS232_TxHandler()
ProbeRS232_TxStart()

N/A
46

Appendix A
NOTES/WARNINGS

None.

EXAMPLE

Listing A-1 probe_rs232c.c: ProbeRS232_RxTxISRHandler()

void ProbeRS232_RxTxISRHandler (void)
{
 CPU_INT32U status;
 CPU_INT08U rx_data;

 status = UART0MIS;

 if ((status & UARTINT_TX) == UARTINT_TX) { /* Chk if byte tx’d. */
 ProbeRS232_TxHandler();
 }
 if ((status & UARTINT_RX) == UARTINT_RX) { /* Chk if byte rx’d. */
 rx_data = (UART0DR & 0xFF); /* Rd rx’d byte. */
 ProbeRS232_RxHandler(rx_data);
 }

 UART0ICR = status; /* Clr int’s. */
}

47

A-2 PORTING THE TCP/IP COMMUNICATION MODULE

The μC/Probe-Target TCP/IP module makes use of Micriμm’s μC/TCP-IP Berkeley (BSD)

sockets interface. In case you are using a TCP/IP stack different than μC/TCP-IP you are

going to have to make changes to the files shown in Figure A-2:

Figure A-2 μC/Probe-Target TCP/IP Port files

The TCP/IP communication module basically consists of a single server. This server waits

for a packet on a certain port (default, 9930); upon reception, a reply is generated and

transmitted on the same port. By using the common BSD sockets interface, this module

achieves near-universality, with some few tweaks (perhaps) necessary. First, it might be

necessary to include the header file for your network protocol suite.

In the case of μC/TCP-IP the file probe_tcpip.h includes net.h, which is the primary

header file for μC/TCP-IP, but this will probably need to be changed for a different stack.

If your stack does not allow blocking receives, then a delay may need to be inserted after

transmitting and attempting to receive a packet (so that the server task does not monopolize

the CPU). Even if your stack does allow blocking receives, the method for setting the

timeout will be stack dependent, and ProbeTCPIP_ServerInit() should be modified to

set this.

Minor identifier modifications may need to be made, depending on the stack’s BSD

implementation. Table A-1 shows the BSD socket functions that are used by the module.

Find the analogous function in your TCP/IP stack and replace them in the file

probe_tcpip.c.

Micrium
Software

uC Probe
Target

Communication
Generic

TCPIP
Source

probe_tcpip.c
probe_tcpip.h
48

Appendix A
Other things to review in the file probe_tcpip.c that may be different in the TCP/IP stack

of your choice are the following:

■ Socket data type

■ Error codes

■ Return values on function failure

■ Byte ordering

BSD Sockets Function Description Called By

socket() The function creates an endpoint for communication

and returns a file descriptor for the socket.

ProbeTCPIP_ServerInit()

bind() The function assigns a socket to an address. ProbeTCPIP_ServerInit()

recvfrom() Reads data from the remote host specified by

fromAddr into buffer. The socket must be UDP.

ProbeTCPIP_RxPkt()

sendto() Writes data to the remote host specified by

fromAddr into buffer. The socket must be UDP.

ProbeTCPIP_TxStart()

close() The function frees a socket’s resources by

disconnecting it from the remote host.

ProbeTCPIP_ServerInit()
49

Appendix

B

μC/Probe-Target API Functions & Macro’s

Your application interfaces to μC/Probe using any of the functions or macros described in

this appendix. Each of the user-accessible function is presented in alphabetical order. The

following information is provided for each entry:

■ A brief description of the function

■ The function prototype

■ The filename of the source code

■ The #define constant required to enable code for the function

■ A description of the arguments passed to the function

■ A description of any returned value(s)

■ Specific notes and warnings regarding use of the function
50

Appendix B
B-1 PROBECOM_STRRD()

CPU_SIZE_T ProbeCom_StrRd(CPU_CHAR *pdest,
 CPU_SIZE_T len);

The function ProbeCom_StrRd() reads string data from the communication module’s input

buffer.

ARGUMENTS

pdest This is a pointer to the destination buffer.

len Length of the destination buffer, in octets/characters.

RETURNED VALUES

Number of octets/characters read.

NOTES/WARNINGS

This function implements a non-blocking read. It will read as much data as is already

buffered, up to len bytes/characters. The calling application should monitor the return value

to see if more data needs to be read. Since this function never blocks, it should not be

called in a tight loop without a delay. This function may be called from an ISR.

File Called from Code enabled by

probe_com.c Application N/A
51

B-2 PROBECOM_STRWR()

CPU_SIZE_T ProbeCom_StrWr(CPU_CHAR *psrc,
 CPU_SIZE_T len);

The function ProbeCom_StrWr() writes string data to the communication module’s output

buffer.

ARGUMENTS

psrc This is a pointer to the source buffer.

len Length of the source buffer, in octets/characters.

RETURNED VALUES

Number of octets/characters written.

NOTES/WARNINGS

This function implements a non-blocking write. It will write as much data as fits into the

buffer, up to len bytes/characters. The calling application should monitor the return value to

see if more data from the buffer needs to be written. Since this function never blocks, it

should not be called in a tight loop without a delay. This function may be called from an

ISR.

File Called from Code enabled by

probe_com.c Application N/A
52

Appendix B
B-3 PROBECOM_TERMINALOUT()

CPU_SIZE_T ProbeCom_TerminalOut(CPU_CHAR *pdest,
 CPU_SIZE_T len);

This function outputs data over the terminal.

ARGUMENTS

pdest This is a pointer to the destination buffer.

len Length of the destination buffer, in octets/characters.

RETURNED VALUES

Number of octets/characters written.

NOTES/WARNINGS

This function implements a blocking write. It will queue the request and wait until all of the

data has been buffered or transmitted before returning. Terminal data may ONLY be output

while a command is being executed. Generic read/write functionality is provided by the

string read/write functions (see Appendix B, “ProbeCom_StrRd()” on page 51 and

Appendix B, “ProbeCom_StrWr()” on page 52). This function must not be called from an

ISR.

File Called from Code enabled by

probe_com.c Application N/A
53

B-4 PROBECOM_TERMINALEXECCOMPLETE()

void ProbeCom_TerminalExecComplete(void);

This function outputs data over the terminal.

ARGUMENTS

None.

RETURNED VALUES

None.

NOTES/WARNINGS

This function should be called by the application from the terminal I/O call back function

when the current terminal command and associated output processing have been

completed.

File Called from Code enabled by

probe_com.c Application N/A
54

Appendix B
B-5 PROBECOM_TERMINALEXECSET()

CPU_SIZE_T ProbeCom_TerminalExecSet(PROBE_COM_TERMINAL_EXEC_FNCT);

This function sets that handler that will be invoked to process a terminal command. The

handler should be a function with the following prototype:

void App_TerminalExecFnct(CPU_CHAR *pstr,
 CPU_SIZE_T len);

where pstr is a pointer to the command string, and len is the length of the command

string (in characters) excluding the final NULL byte. The command string will not

include a terminating new line or line feed.

ARGUMENTS

handler The function handler that will be invoked.

RETURNED VALUES

None.

NOTES/WARNINGS

The application must call this function in order to specify a terminal command callback

function if terminal I/O processing is to be performed.

File Called from Code enabled by

probe_com.c Application N/A
55

B-6 PROBECOM_TERMINALINSET()

CPU_SIZE_T ProbeCom_TerminalExecSet(PROBE_COM_TERMINAL_EXEC_FNCT);

This function sets that handler that will be invoked to process terminal input. The handler

should be a function with the following prototype:

void App_TerminalInFnct(CPU_CHAR *pstr,
 CPU_SIZE_T len);

where pstr is a pointer to the input string, and len is the length of the input string (in

characters) excluding the final NULL byte. The input string will not include a

terminating new line or line feed.

ARGUMENTS

handler The function handler that will be invoked.

RETURNED VALUES

None.

NOTES/WARNINGS

The application must call this function in order to specify a terminal input callback function

if terminal I/O processing is to be performed.

File Called from Code enabled by

probe_com.c Application N/A
56

Appendix B
57

Appendix

C

ELF Files with DWARF Debug Information

This appendix shows examples of how to configure your toolchain to generate an ELF file

with debugging information in the DWARF-2, -3 or -4 format.

These examples are provided as reference, please consult your own toolchain’s manual if

your IDE is not listed in these examples.
58

Appendix C
C-1 IAR EWARM

C-1-1 ASSEMBLER OPTIONS

Open the options for your embedded project, select General Options -> Assembler ->
Output and select the check box Generate Debug Information as shown in Figure C-1:

Figure C-1 IAR EWARM Assembler Debug Information
59

C-1-2 C COMPILER OPTIONS

Open the options for your project, select General Options -> C/C++ Compiler -> Output
and select the check box Generate Debug Information as shown in Figure C-2:

Figure C-2 IAR EWARM C Compiler Debug Information
60

Appendix C
C-1-3 LINKER OPTIONS

Open the options for your project, select General Options -> Linker -> Output and select

the check box Include Debug Information in output as shown in Figure C-3:

Figure C-3 IAR EWARM Linker Debug Information

C-2 KEIL μVISION 4

Open the options for your project, select the Output tab and select the check box Debug
Information as shown in Figure C-4:

Figure C-4 Keil μVision 4 Debug Information
61

C-3 RENESAS E2STUDIO

Open the properties for your project, select C/C++ Build -> Renesas Settings ->
Compiler -> Object and select from the drop downs the options shown in Figure C-5:

Figure C-5 Renesas e2Studio C Compiler Debug Information
62

Appendix C
63

Appendix

D

XML-based Custom Symbol Files (CSF)

μC/Probe is capable of parsing XML-based Custom Symbol Files (CSF), which is very useful

for those cases where your toolchain is incapable of generating one of the ELF file formats

supported by μC/Probe. The best way to create a CSF file is by modifying the template

located in your μC/Probe installation directory at:

 $\Micrium\µC-Probe\Help\uC-Probe-CustomSymbolFile-Template.csf

The template is associated with an XSD document that defines the XML schema for CSF files

supported by μC/Probe. We recommend using an XML editor capable of providing

IntelliSense features such as Visual Studio, shown in Figure D-1:.

Figure D-1 Creating a CSF in Visual Studio: Drop-Down Lists
64

Appendix D
Visual Studio makes editing your CSF file easier by filling required XML syntax for you. For

example, after a schema is associated with your CSF, you get a drop-down list of expected

elements any time you type "<".

When you type SPACE from inside a start tag, you also get a drop-down list showing all

attributes that can be added to the current element.

Likewise, when you type "=" for an attribute value, or the opening quote for the value, you

also get a list of possible values for that attribute.

Moreover, ToolTips appear on these IntelliSense lists giving you a description of each

element as illustrated in Figure D-2:

Figure D-2 Creating a CSF in Visual Studio: Tool Tips

Custom Symbol Files need to have the extension .csf for μC/Probe to recognize them as

such. Listing D-1 shows an example of a CSF file that declares one integer, one array and

one data structure.
65

Listing D-1 XML-based Custom Symbol File Example

LD-1(1) The root element is called <CustomSymbols>. It includes the XSD schema

reference to help you editing in an XML editor such as Visual Studio.

LD-1(2) Each symbol or group of symbols are within the element tag

<GroupOfSymbols>. In this case it is used with the purpose of creating a group

of symbols declared in one single C file.

LD-1(3) The name of the group of symbols is App.c.

LD-1(4) The name of the first symbol in the group as declared in C.

<?xml version="1.0"?>
<CustomSymbols xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://micrium.com/probe/csf.xsd" > (1)
 <GroupOfSymbols> (2)
 <GroupName>App.c</GroupName> (3)
 <Symbols>
 <Symbol>
 <Name>MyUInt32</Name> (4)
 <DisplayName>My UInt32 Global Variable</DisplayName> (5)
 <DataType Size="4">unsigned long</DataType> (6)
 <MemoryAddress>0x10F4</MemoryAddress> (7)
 </Symbol>
 <Symbol>
 <Name>MyStruct</Name>
 <DataType Size="50">struct</DataType>
 <MemoryAddress>0x50AC</MemoryAddress>
 <DataMembers> (8)
 <Symbol>
 <Name>MyArray</Name>
 <DataType Size="16" IsArray="true" ArrayLength="4">int</DataType> (9)
 <MemoryAddress>0x50AC</MemoryAddress>
 </Symbol>
 <Symbol>
 <Name>MyCharPointer</Name>
 <DataType Size="4" IsPointer="true">char</DataType> (10)
 <MemoryAddress>1025</MemoryAddress>
 </Symbol>
 </DataMembers>
 </Symbol>
 </Symbols>
 </GroupOfSymbols>
</CustomSymbols>
66

Appendix D
LD-1(5) You can also specify an alias for the group name for display purposes.

LD-1(6) The element tag <DataType> is the ANSI C data type of the variable including

the size in bytes as an attribute.

LD-1(7) The element tag <MemoryAddress> is the variable’s memory address in either

decimal or hexadecimal format (0x1234).

LD-1(8) For more complex symbols such as data structures, there is a tag called

<DataMembers> that allows you to specify a group of symbols that make part

of a data structure.

LD-1(9) In order to declare an array, you need to specify three attributes: A boolean flag

that indicates that the symbol is an array, the total number of bytes and the

number of elements in the array.

LD-1(10) Finally, any data type can be declared as a pointer by using the data type

boolean attribute IsPointer. In this case, it is the intention to specify a

symbol declared as char *.

In order to verify your CSF file, you can use the Symbol Browser from within μC/Probe as

shown in Figure D-3. Notice the relationship between the XML tags and the tree nodes in

the Symbol Browser.:

Figure D-3 XML-based Custom Symbol File Example as seen from μC/Probe’s Symbol Browser
67

Appendix

E

Terminal Window Control

μC/Probe provides an option to enable debug traces to output the embedded target's

activity via any of the communication interfaces supported by μC/Probe. A trace message is

displayed in a terminal window control in μC/Probe, by calling a function

ProbeTermTrcPrint() from your embedded application as illustrated in Figure E-1.

Additionally, you can prefix the messages with special tags that μC/Probe will replace with

icons that you get to choose.

Figure E-1 Terminal Window Control - Trace Interface

Embedded System
Running μC/Probe

Target Code

Windows PC
Running μC/Probe

JT
A

G

R
S-

23
2

TC
P

/IP
ELF File

µC/Probe Workspace

Symbol names
and addresses

Dashboard made out of virtual controls
(i.e. Terminal Window control)
mapped to the target's symbols

Internet

ProbeTermTrcPrint("Testing tracing output...");
68

Appendix E
At the same time, μC/Probe provides the option to enable a command-line interface to the

embedded target. A command-line interface allows the user to issue a command to the

target from a terminal window control in μC/Probe. Examples of command lines are

ipconfig, dir or whatever command the programmer wants to implement in the

embedded target.

Figure E-2 Terminal Window Control - Command Line Interface

This appendix will introduce you to the debug trace and command-line tools available in

μC/Probe. It will show you how to include them in your embedded target code and make

use of them by covering the following topics:

■ Prerequisites

■ Downloading the necessary code for your embedded target

Embedded System
Running μC/Probe

Target Code

Windows PC
Running μC/Probe

JT
A

G

R
S-

23
2

TC
P

/IP

ELF File

µC/Probe Workspace

Symbol names
and addresses

Dashboard made out of virtual controls
(i.e. Terminal Window control)
mapped to the target's symbols

Internet

ProbeTermCmdPrint("IPv4 Address...");
69

■ Including the code in your embedded target project

■ Configuring the code in your embedded target project

■ Initializing the command-line and tracing interfaces

■ Using the tracing function

■ Using the command-line interface

E-1 PREREQUISITES

The only requirement is to have a running copy of μC/Probe communicating with your

embedded target. Whether it is interfaced via J-Link, RS-232, TCP/IP or any of our certified

third-party plugins such as the one distributed with IAR Systems Embedded Workbench,

you can add trace and command-line functionality to your embedded product very easily.

E-2 DOWNLOADING THE NECESSARY CODE FOR YOUR
EMBEDDED TARGET

The target code that supports the μC/Probe terminal window control is available for free

from our download center at:

http://micrium.com/downloadcenter/download-results?searchterm=mp-uc-probe&supported=true

Look for the download link labeled μC/Probe 3.0 Target Code for the Terminal Window

Control.

The download includes the files illustrated in Figure E-3
70

Appendix E
Figure E-3 Terminal Window Target Code Files

FE-3(1) The C source files probe_term.c and probe_term.h implement the core of

the terminal window interface, including the protocol handshaking, state

machines and the mechanism for message queueing. It is generic code and it

does not depend on the kernel you are running; therefore, no changes to this

code are necessary.

FE-3(2) The C source file app_probe_term.c sits at the application level and allows

you to register a callback function that is invoked every time the user enters a

command in the terminal window from μC/Probe. This callback function

allows you to parse the command and respond appropriately. See section E-8

“Using the Command Line Interface” on page 79 for more details.

FE-3(3) The C header file probe_term_cfg.h allows you to configure the terminal

window interface to satisfy your application's footprint and performance

requirements. See section E-4 “Configuring the Code in your Embedded Target

Project” on page 74 for more details.
71

FE-3(4) The C source file probe_term_os.c implements the OS layer for the case your

embedded application does not have a kernel or it has a kernel different than

the ones made by Micriμm.

FE-3(5) The C source file probe_term_os.c implements the OS layer that supports

embedded applications based on Micriμm's μC/OS-II real-time kernel. No

changes are required.

FE-3(6) The C source file probe_term_os.c implements the OS layer that supports

embedded applications based on Micriμm's μC/OS-III real-time kernel. No

changes are required.

E-3 INCLUDING THE CODE IN YOUR EMBEDDED TARGET
PROJECT

The following sections describe which files to include in your embedded project depending

on whether you are running μC/OS-II, μC/OS-III or no kernel at all.

Follow the instructions from one of the next three options.

E-3-1 INCLUDING THE CODE IN YOUR μC/OS-II EMBEDDED
TARGET PROJECT

Configure your C project to compile all the C files shown in Figure E-3 except for the files

indicated by the annotations FE-3(4) and FE-3(6).

Then, you need to add to your application code the following directive:

#include <probe_term.h>

Finally, you need to configure your C project's compiler settings to include the two new

directory paths where the terminal window target code is located:

$\Micrium\Software\uC-Probe\Target\Terminal

$\Micrium\Software\uC-Probe\Target\Terminal\OS\uCOS-II
72

Appendix E
E-3-2 INCLUDING THE CODE IN YOUR μC/OS-III EMBEDDED
TARGET PROJECT

Configure your C project to compile all the C files shown in Figure E-3 except for the files

indicated by the annotations FE-3(4) and FE-3(5).

Then, you need to add to your application code the following directive:

#include <probe_term.h>

Finally, you need to configure your C project's compiler settings to include the two new

directory paths where the terminal window target code is located:

$\Micrium\Software\uC-Probe\Target\Terminal

$\Micrium\Software\uC-Probe\Target\Terminal\OS\uCOS-III

E-3-3 INCLUDING THE CODE IN ANY EMBEDDED TARGET
PROJECT

Configure your C project to compile all the files shown in Figure E-3 except for the files

indicated by the annotations FE-3(5) and FE-3(6).

Then, you need to add to your application code the following directive:

#include <probe_term.h>

Finally, you need to configure your C project's compiler settings to include the two new

directory paths where the terminal window target code is located:

$\Micrium\Software\uC-Probe\Target\Terminal

$\Micrium\Software\uC-Probe\Target\Terminal\OS\None
73

E-4 CONFIGURING THE CODE IN YOUR EMBEDDED TARGET
PROJECT

The C header file probe_term_cfg.h allows you to configure the terminal window

interface to satisfy your application's footprint and performance requirements through a

series of pre-processor macros as shown in the code listing below:

Listing E-1 Terminal Window Configuration

LE-1(1) The C pre-processor macro PROBE_TERM_CFG_CMD_EN allows you to enable or

disable all the C code related to the command line interface. The command line

interface core includes two state machines; One for the reception of commands

and the other for the transmission of responses. If your embedded application

runs on top of a kernel, then each state machine is executed by a task.

LE-1(2) The C pre-processor macro PROBE_TERM_OS_CFG_CMD_RX_TASK_STK_SIZE
allows you to specify the size of the command-line reception task's stack

assuming your embedded application is running on top of a kernel.

/*
**
* UC/PROBE TERMINAL WINDOW GENERIC CONFIGURATION
**
*/
 /* ----- COMMAND LINE INTERFACE ---- */
#define PROBE_TERM_CFG_CMD_EN 1 /* Interface enable. */ (1)
#define PROBE_TERM_OS_CFG_CMD_RX_TASK_STK_SIZE 128 /* OS task stack size. */ (2)
#define PROBE_TERM_OS_CFG_CMD_RX_TASK_PRIO 10 /* OS task priority. */ (3)
#define PROBE_TERM_OS_CFG_CMD_TX_TASK_STK_SIZE 128 /* OS task stack size. */ (4)
#define PROBE_TERM_OS_CFG_CMD_TX_TASK_PRIO 11 /* OS task priority. */ (5)
 /* ---------- TRACE INTERFACE -------*/
#define PROBE_TERM_CFG_TRC_EN 1 /* Interface enable. */ (6)
#define PROBE_TERM_OS_CFG_TRC_TASK_STK_SIZE 128 /* OS task stack size. */ (7)
#define PROBE_TERM_OS_CFG_TRC_TASK_PRIO 12 /* OS task priority. */ (8)

#define PROBE_TERM_CFG_BUF_SIZE 64 /* Max size of the Rx/Tx msg arrays. */ (9)
#define PROBE_TERM_CFG_Q_SIZE 8 /* Max nbr of msg arrays in the q. */ (10)

#define PROBE_TERM_OS_CFG_TASK_DLY_MSEC 100 /* OS task dly in msecs to yield CPU.*/ (11)
74

Appendix E
LE-1(3) The C pre-processor macro PROBE_TERM_OS_CFG_CMD_RX_TASK_PRIO allows

you to specify the priority of the command-line reception task assuming your

embedded application is running on top of a kernel.

LE-1(4) The C pre-processor macro PROBE_TERM_OS_CFG_CMD_TX_TASK_STK_SIZE
allows you to specify the size of the command-line transmission task's stack

assuming your embedded application is running on top of a kernel.

LE-1(5) The C pre-processor macro PROBE_TERM_OS_CFG_CMD_TX_TASK_PRIO allows

you to specify the priority of the command-line transmission task assuming

your embedded application is running on top of a kernel.

LE-1(6) The C pre-processor macro PROBE_TERM_CFG_TRC_EN allows you to enable or

disable all the C code related to the tracing interface. The tracing interface core

includes one single state machine. If your embedded application runs on top of

a kernel, then this state machine is executed by a task.

LE-1(7) The C pre-processor macro PROBE_TERM_OS_CFG_TRC_TASK_STK_SIZE allows

you to specify the size of the trace task's stack assuming your embedded

application is running on top of a kernel.

LE-1(8) The C pre-processor macro PROBE_TERM_OS_CFG_TRC_TASK_PRIO allows you

to specify the priority of the trace task assuming your embedded application is

running on top of a kernel.

LE-1(9) The C pre-processor macro PROBE_TERM_CFG_BUF_SIZE allows you to specify

the size of the data buffer. In the case of the command-line interface, configure

it to hold the longest command including its arguments that you expect to

receive from the user.

LE-1(10) The C pre-processor macro PROBE_TERM_CFG_Q_SIZE allows you to specify the

amount of messages of length PROBE_TERM_CFG_BUF_SIZE that you can hold

in queue.

LE-1(11) The C pre-processor macro PROBE_TERM_OS_CFG_TASK_DLY_MSEC allows you

to specify the amount of time in milliseconds that the command-line and

tracing interfaces are willing to yield the CPU in case your embedded

application is running on top of a kernel.
75

E-5 INITIALIZING THE COMMAND LINE AND TRACING
INTERFACES

In order to initialize the command-line and tracing interfaces, you need to add to your

application code the 3 lines shown in the code listing below:

Listing E-2 Initialization

LE-2(1) Declare a local variable to receive the error code from the terminal window

module.

LE-2(2) The function AppProbeTermSetAllHooks() is declared in app_probe_term.c.
You need to call this function to register the callback function that ties the

terminal window module with your application code for command-line

purposes. If you are only going to use the tracing functionality, then you do not

need to call this function.

LE-2(3) Finally, you need to call the function ProbeTermInit() in order to initialize

the state machines and OS layer.

int main (void)
{
 PROBE_TERM_ERR probe_term_err; (1)

 ...

 AppProbeTermSetAllHooks(); /* Sets all the application hooks. */ (2)
 ProbeTermInit(&probe_term_err); /* Initialize the uC/Probe terminal window. */ (3)

 ...

 return (0);
}

76

Appendix E
E-6 USING THE TRACING FUNCTION

In order to output a trace message from your embedded application to the terminal window

control in μC/Probe, you need to call the non-blocking function ProbeTermTrcPrint() as

shown in the following code listings.

The first example in code Listing E-3 shows you that you can call the

ProbeTermTrcPrint() function multiple times one after the other for up to a maximum of

the value configured in PROBE_TERM_CFG_Q_SIZE, which represents the maximum number

of entries in the queue.

Because of the nature of the μC/Probe communication interfaces, every time you call

ProbeTermTrcPrint() the system is queueing up the message; Therefore, consider

configuring PROBE_TERM_CFG_Q_SIZE according to your application needs. The example

below shows that if PROBE_TERM_CFG_Q_SIZE is set to 8, then you can call

ProbeTermTrcPrint() for up to 8 consecutive times. Keep in mind that depending on the

communication interface of your choice, each call to ProbeTermTrcPrint() takes a total

time of up to 100ms to display the message.

Listing E-3 Tracing by Multiple Consecutive Calls

In case your embedded application does not have enough memory to fit queues, you can

also choose to trace messages by concatenating them into one single call as shown in code

Listing E-4:

ProbeTermTrcPrint("Testing a trace line #1\n"); /* Prints a trace msg on the term window. */
ProbeTermTrcPrint("Testing a trace line #2\n"); /* Prints a trace msg on the term window. */
ProbeTermTrcPrint("Testing a trace line #3\n"); /* Prints a trace msg on the term window. */
ProbeTermTrcPrint("Testing a trace line #4\n"); /* Prints a trace msg on the term window. */
ProbeTermTrcPrint("Testing a trace line #5\n"); /* Prints a trace msg on the term window. */
ProbeTermTrcPrint("Testing a trace line #6\n"); /* Prints a trace msg on the term window. */
ProbeTermTrcPrint("Testing a trace line #7\n"); /* Prints a trace msg on the term window. */
ProbeTermTrcPrint("Testing a trace line #8\n"); /* Prints a trace msg on the term window. */
77

Listing E-4 Tracing by a Single Call

Also, notice that the maximum length of your tracing message depends on both, the

maximum data buffer size configured in PROBE_TERM_CFG_BUF_SIZE and the queue size

configured in PROBE_TERM_CFG_Q_SIZE, because the system splits the tracing message in

chunks of PROBE_TERM_CFG_BUF_SIZE characters in length and puts them in the queue.

E-7 USING THE TRACING MESSAGE ICON TAGS

μC/Probe allows you to display icons on the terminal window for each of the tracing

messages. All you have to do is include in your message a tag for the icon you want to

display next to the message. For example, if your tracing message is meant to be an error,

you can prefix your message with the tag [Error] and μC/Probe will include an error icon

next to the message.

Listing E-5 Tracing Message Icon Tags

ProbeTermTrcPrint("Testing a trace line #1\nTesting a trace line #2\n"
 "Testing a trace line #3\nTesting a trace line #4\n"
 "Testing a trace line #5\nTesting a trace line #6\n"
 "Testing a trace line #7\nTesting a trace line #8\n");

ProbeTermTrcPrint("[Error] Testing error.\n"); /* Prints an error msg on the term win. */
ProbeTermTrcPrint("[Warning] Testing warning.\n"); /* Prints a warning msg on the term win. */
ProbeTermTrcPrint("[Info] Testing information.\n"); /* Prints an info msg on the term win. */
78

Appendix E
E-8 USING THE COMMAND LINE INTERFACE

In order to be able to process user's commands from your embedded application, you need

to implement the callback function AppProbeTermHookRx() declared in the C file

app_probe_term.c as shown in the example code below:

Listing E-6 Application Hook

The function AppProbeTermHookRx() gets called every time the user sends a command line

from μC/Probe. The pointer to the command line string is p_str. All you have to do is parse

the command line and respond to the command by calling the function

ProbeTermCmdPrint().

Alternatively, if the number of commands to process is more than just a couple, you can

always tie this callback function to a Micriμm module that is specifically designed to provide

a shell interface to embedded systems, called μC/Shell.

μC/Shell is distributed for free and is a stand-alone module that allows you to parse and

execute a string that contains a command and its arguments. For more information, please

contact our sales department to get a free copy of μC/Shell.

void AppProbeTermHookRx (CPU_CHAR *p_str)
{
 CPU_CHAR buf[PROBE_TERM_CFG_BUF_SIZE];

 if (Str_CmpIgnoreCase_N(p_str, "dir", 3) == 0) { /* Process "dir". */
 ProbeTermCmdPrint("test.txt\ntest.jpg\ntest.wav\n");
 } else if (Str_CmpIgnoreCase_N(p_str, "ipconfig", 8) == 0) { /* Process "ipconfig". */
 ProbeTermCmdPrint("IPv4 Address......: 10.10.1.149\n");
 ProbeTermCmdPrint("Subnet Mask.......: 255.255.255.0\n");
 ProbeTermCmdPrint("Default Gateway...: 10.10.1.1\n");
 } else if (Str_CmpIgnoreCase_N(p_str, "echo", 4) == 0) { /* Process "echo" for test */
 Str_Copy_N(&buf[0], &p_str[5], PROBE_TERM_CFG_BUF_SIZE - 2);
 Str_Cat_N(&buf[Str_Len(buf)], "\n\0", 2);
 ProbeTermCmdPrint(&buf[0]);
 } else {
 ProbeTermCmdPrint("[ERROR] Invalid/Unknown Command\n");
 }
}

79

Appendix

F

μC/Trace Triggers Control

μC/Trace is a runtime diagnostics tool for embedded software systems based on μC/OS-III.

μC/Trace gives developers an unprecedented insight into the runtime behavior, which

allows for reduced troubleshooting time and improved software quality, performance and

reliability. Complex software problems which otherwise may require many hours or days to

solve, can with μC/Trace be understood quickly, often in a tenth of the time otherwise

required. This saves you many hours of troubleshooting time. Moreover, the increased

software quality resulting from using μC/Trace can reduce the risk of defective software

releases, causing damaged customer relations.

The insight provided by μC/Trace also allows you to find opportunities for optimizing your

software. You might have unnecessary resource conflicts in your software, which are "low

hanging fruit" for optimization and where a minor change can give a significant

improvement in real-time responsiveness and user-perceived performance. By using

μC/Trace, software developers can reduce their troubleshooting time and thereby get more

time for developing new valuable features. This means a general increase in development

efficiency and a better ability to deliver high-quality embedded software within budget.

μC/Trace provides more than 20 interconnected views of the runtime behavior, including

task scheduling and timing, interrupts, interaction between tasks, as well as user events

generated from your application as shown in Figure F-1. μC/Trace can be used side-by-side

with a traditional debugger and complements the debugger view with a higher level

perspective, ideal for understanding the complex errors where a debugger’s perspective is

too narrow.

μC/Trace is more than just a viewer. It contains several advanced analyses developed since

2004, that helps you faster comprehend the trace data. For instance, it connects related

events, which allows you to follow messages between tasks and to find the event that

triggers a particular task instance. Moreover, it provides various higher level views such as

the Communication Flow graph and the CPU load graph, which make it easier to find

anomalies in a trace.
80

Appendix F
μC/Trace does not depend on additional trace hardware, which means that it can be used in

deployed systems to capture rare errors which otherwise are hard to reproduce.

Figure F-1 μC/Trace Analyzer Windows

The μC/Trace solution consists of three parts:

■ The PC application (μC/Trace), used to analyze the recordings as shown in Figure F-1.

■ A trace recorder library that integrates with μC/OS-III, provided in C source code.

■ Optionally, μC/Probe can be used for the target system connection.

The PC application μC/Trace has been developed for Microsoft Windows.
81

The trace recorder library stores the event data in a RAM buffer, which is uploaded on

request to the host PC using your existing debugger connection or μC/Probe.

And finally, you can use μC/Probe and a special control designed for μC/Trace called

μC/Trace Trigger Control, to trigger a recording and launch the μC/Trace analyzer. The

μC/Trace Trigger Control is shown in Figure F-2:

Figure F-2 μC/Trace Trigger Control

This appendix will describe how to use the μC/Trace Trigger control by discussing the

following topics:

■ Including the μC/Trace supporting code in your target

■ μC/Trace Triggers Functional Description that includes the following topics:

■ Configuring μC/Trace Triggers in your target

■ Instrumenting your target code with μC/Trace Triggers

■ Triggering and analyzing recordings from a μC/Trace Trigger control for μC/Probe
82

Appendix F
F-1 INCLUDING THE μC/TRACE SUPPORTING CODE IN YOUR
TARGET

The target code to support the μC/Trace Triggering functionality is available at the Micriμm

website at:

http://www.micrium.com

The files are illustrated in the figure below:

Figure F-3 μC/Trace Target Code Files

Micrium
Software

uC Trace
Recorders

Percepio
OS

uCOS III
trace_os.h

TraceRecorderLibrary
trcBase.c
trcHardwarePort.c
trcKernel.c
trcUser.c

Cfg
trcConfig.h
trcHardwarePort.h

Include
trcBase.h
trcKernel.h
trcKernelHooks.h
trcTypes.h
trcUser.h

KernelPorts
uCOS III

trcKernelPort.c
trcKernelPort.h

Source
trace_trig.c
trace_trig.h

(1)

(2)

(3)

(4)

(5)

(6)
83

FF-3(1) μC/Trace is designed to work with third-party trace recorders such as the one

developed by a Swedish company called Percepio AB. An OS layer defined in

trace_os.h allows you to use any of the supported third-party recorders

without any changes to your application code.

FF-3(2) The core source files for the trace recorder library by Percepio.

FF-3(3) A couple of files allow you to configure the size of the RAM buffer and the

hardware clock among other settings.

FF-3(4) The core header files for the trace recorder library by Percepio.

FF-3(5) The kernel port that implements how to record the kernel events.

FF-3(6) The μC/Trace Triggering mechanism that allows you to use μC/Trace in

conjunction with μC/Probe to arm/disarm recording triggers and upload

recordings to the host PC.
84

Appendix F
F-2 μC/TRACE TRIGGERS FUNCTIONAL DESCRIPTION

Figure F-4 shows the block diagram of the entire system including the trace recording

facility in the target code and μC/Probe and μC/Trace in the host system. The entire

operation can be described in 10 steps.

Figure F-4 μC/Trace Block Diagram

(1)

(2)
(3)

(4)

(6)

(5)

(7)

(8)

(9)

(10)
85

FF-4(1) The first step to get started with μC/Trace is enabling the module in app_cfg.h
through the definition of the macro TRACE_CFG_EN set to 1. The second step in

this configuration stage is to define the trigger points in the table declared in

trace_trig_cfg.c as shown in Listing F-1:

Listing F-1 μC/Trace Triggers Configuration Table

The first parameter is the trigger ID, the second parameter is the name of

trigger and the third parameter is the number of recordings you want to capture

before disarming the trigger automatically.

Once you have the trigger IDs configured, you can start instrumenting your

code by simply calling the macro TRACE_TRIG() with the trigger ID as a

parameter wherever you want to start recording.

FF-4(2) You initialize the μC/Trace module by calling the macro TRACE_INIT().

FF-4(3) You initialize the μC/Trace Triggers module by calling the function

TraceTrigInit().

/*
**
* UC/TRACE TRIGGERS IDS
**
*/

#define TRACE_TRIG_ID_SW1 1234u
#define TRACE_TRIG_ID_SW2 1235u
#define TRACE_TRIG_ID_ISR_RS232_RX 1236u

/*
**
* UC/TRACE TRIGGERS CONFIGURATION TABLE
**
*/

const TRACE_TRIG_CFG TraceTrigCfgTbl[] =
{
 {TRACE_TRIG_ID_SW1, "Task # 1 (SWITCH 1)", 3},
 {TRACE_TRIG_ID_SW2, "Task # 2 (SWITCH 2)", 3},
 {TRACE_TRIG_ID_ISR_RS232_RX, "RS-232 Rx ISR (SWITCH 3)", 1}
};
86

Appendix F
FF-4(4) The user interface for μC/Trace Triggers is μC/Probe. Once you get μC/Probe

communicating with your target as described in the μC/Probe documentation

you can create a workspace that contains the μC/Trace Trigger control found in

the μC/Probe toolbox. This control shown Figure F-2, allows you to not only

arm and disarm the recording triggers in your target but also upload the

recording and launch the μC/Trace analyzer Windows application.

In this step, the user would arm one or more of the trigger points.

FF-4(5) As soon as the part of your target code reaches the point where the

TRACE_TRIG() macro gets executed, the system will start recording.

FF-4(6) All the kernel events will be recorded into RAM.

FF-4(7) The events get recorded into RAM by using a special encoding that takes 4

bytes per event.

FF-4(8) As soon as the recording gets stopped either because your application calls the

TRACE_STOP() macro or the RAM buffer gets full, the μC/Trace Triggers

module gets notified by the recorder.

FF-4(9) In turn, the μC/Trace Triggers module notifies μC/Probe that the recording is

finished.

FF-4(10) μC/Probe and its μC/Trace Triggers control in particular receive the notification

from the target and start reading the recording off the target’s RAM, dump the

raw bytes to a file and launch the μC/Trace Windows application to analyze the

trace.
87

Appendix

G

Oscilloscope Control

μC/Probe allows you to analyze data in real-time by showing the value of multiple memory

addresses in a screen akin to an oscilloscope. Similar to other controls in μC/Probe, you

simply select the variables you want to plot from the Symbol Browser. The oscilloscope

control can display up to 8 channels in either a single vertical scale or multiple scales.

Figure G-1 μC/Probe Oscilloscope Control

This appendix gives you step-by-step instructions on how to include and configure the

embedded target resident code to support the oscilloscope control in μC/Probe. The final

section provides a summary in the form of block diagrams.

For more information on how to use the oscilloscope control from within μC/Probe (i.e. the

Windows PC), refer to the document μC/Probe User’s Manual.
88

Appendix G
G-1 DOWNLOADING THE NECESSARY CODE FOR YOUR
EMBEDDED TARGET

The target code that supports the μC/Probe Oscilloscope Control is available for free from

our website at:

https://www.micrium.com/tools/ucprobe/software-and-docs/

Look for the download link labeled μC/Probe Embedded Target Code.

The download includes the files illustrated in Figure G-2

Figure G-2 Oscilloscope Target Code Files

FG-2(1) The C source files probe_scope.c and probe_scope.h implement the core of

the oscilloscope control, including the state machine and the mechanism for

triggering. It is generic code and it does not depend on the kernel you are

running; therefore, no changes to this code are necessary.

FG-2(2) The C header file probe_scope_cfg.h allows you to configure the

oscilloscope control to satisfy your application's footprint and performance

requirements. See section G-3 “Configuring the Code in your Embedded Target

Project” on page 90 for more details.
89

G-2 INCLUDING THE CODE IN YOUR EMBEDDED TARGET
PROJECT

Configure your C project to compile all the C files shown in Figure G-2.

Then, you need to add to your application code the following directive:

#include <probe_scope.h>

Finally, you need to configure your C project's compiler settings to include the two new

directory paths where the oscilloscope control target code is located:

$\Micrium\Software\uC-Probe\Target\Scope

$\Micrium\Software\uC-Probe\Target\Scope\Cfg

G-3 CONFIGURING THE CODE IN YOUR EMBEDDED TARGET
PROJECT

The C header file probe_scope_cfg.h allows you to configure the oscilloscope control to

satisfy your application's footprint and performance requirements through a series of

pre-processor macros as shown in the code listing below:

Listing G-1 Oscilloscope Configuration

LG-1(1) The C pre-processor macro PROBE_SCOPE_MAX_CH allows you to specify the

maximum number of channels.

/*
**
* UC/PROBE SCOPE CONFIGURATION
**
*/

#define PROBE_SCOPE_MAX_CH 8 /* Max number of channels: [1,8]. */ (1)

#define PROBE_SCOPE_MAX_SAMPLES 1000 /* Max number of samples per channel. */ (2)

#define PROBE_SCOPE_16_BIT_EN 1 /* Max size of sample is 16-bits: [0,1]. */ (3)

#define PROBE_SCOPE_32_BIT_EN 1 /* Max size of sample is 32-bits: [0,1]. */ (4)
90

Appendix G
LG-1(2) The C pre-processor macro PROBE_SCOPE_MAX_SAMPLES allows you to specify

the maximum number of samples to acquire per channel.

LG-1(3) The C pre-processor macro PROBE_SCOPE_16_BIT_EN allows you to enable or

disable support for 16-bit sample channels.

LG-1(4) The C pre-processor macro PROBE_SCOPE_32_BIT_EN allows you to enable or

disable support for 32-bit sample channels.

G-4 INITIALIZING THE OSCILLOSCOPE CONTROL

In order to initialize the oscilloscope control, you need to call the function

ProbeScope_Init() as shown in the code listing below:

Listing G-2 Initialization

LG-2(1) Call the function ProbeScope_Init() with the sampling frequency as an

argument. That is the frequency in hertz at which you intend to call this

function.

G-5 DATA ACQUISITION

Whenever you want to acquire samples, you call the function ProbeScope_Sampling().

The most typical use is to configure a hardware timer to guarantee that the samples are

equally spaced in time. That is your choice. In any case, it is assumed that the samples are

equally spaced in time.

The following diagrams summarize the previous discussion and the two scenarios:

int main (void)
{
 ProbeScope_Init(10000); /* Initialize the uC/Probe scope ocntrol.. */ (1)

 ...

}

91

Figure G-3 μC/Probe Oscilloscope Control: Data Acquisition: No hardware timer

FG-3(1) Include the probe_scope.c and probe_scope.h files in your project.

FG-3(2) Configure the scope by declaring these five macros in a file called

probe_scope_cfg.h.

FG-3(3) Call ProbeScope_Init(sampling_clk_hz) from your application to initialize

the scope.

FG-3(4) Call ProbeScope_Sampling() to acquire the samples periodically.

If you configure your own hardware timer to acquire the samples then the diagram changes

slightly as shown below:

µC/Probe Scope Target Code

Embedded Application Code

probe_scope_ cfg.h (2)

ProbeScope_Init(sampling_clk_hz)

int main(void)

probe_scope.c/h

#define PROBE_SCOPE_MAX_CH 8
#define PROBE_SCOPE_MAX_SAMPLES 1000
#define PROBE_SCOPE_16_BIT_EN 1
#define PROBE_SCOPE_32_BIT_EN 1
#define PROBE_SCOPE_SAMPLING_CLK_HZ_DFLT 10000

/* Core files. */

/* No need to edit. */

/* They implement the scope's initialization and */
/* state machine to fill the buffers with samples */
/* in the different operating modes: single scan */
/* continuous scan and triggered mode scan. */

ProbeScope_Sampling()

(1)

(3)(4)
92

Appendix G
Figure G-4 μC/Probe Oscilloscope Control: Data Acquisition

FG-4(1) Include the probe_scope.c and probe_scope.h files in your project.

FG-4(2) Configure the scope by declaring these five macros in a file called

probe_scope_cfg.h.

FG-4(3) Declare a function that configures your hardware timer at the specified

sampling frequency.

FG-4(4) Call ProbeScope_Init(sampling_clk_hz) from your application to initialize

the scope.

FG-4(5) Call ProbeScope_SamplingTmrInitHz(sampling_clk_hz) from your

application to initialize the hardware timer.

FG-4(6) Configure the hardware timer’s ISR to call ProbeScope_Sampling() to acquire

the samples periodically.

µC/Probe Scope Target Code

Embedded Application Code

probe_scope_ cfg.h

probe_scope_ tmr.c

(6)

(2)

ProbeScope_Init(sampling_clk_hz)

int main(void)

void ProbeScope_SamplingTmrInitHz(sampling_clk_hz)
{
 /* Your code to configure the hardware timer */
 /* at a certain sampling clock frequency. */
}

probe_scope.c /h

#define PROBE_SCOPE_MAX_CH 8
#define PROBE_SCOPE_MAX_SAMPLES 1000
#define PROBE_SCOPE_16_BIT_EN 1
#define PROBE_SCOPE_32_BIT_EN 1
#define PROBE_SCOPE_SAMPLING_CLK_HZ_DFLT 10000

/* Core files. */

/* No need to edit. */

/* They implement the scope's initialization and */
/* state machine to fill the buffers with samples */
/* in the different operating modes: single scan */
/* continuous scan and triggered mode scan. */

ProbeScope_Sampling()

ProbeScope_SamplingTmrInitHz(sampling_clk_hz)

(1)

(3)

(4)

Hardware
Timer

(Periodic)

(5)
93

Appendix

H

Bibliography

■ Labrosse Jean. μC/OS-II The Real-Time Kernel. R&D Technical Books,

ISBN 1-57820-103-9, 2002.

■ Labrosse Jean. μC/OS-III The Real-Time Kernel. Micriμm Press,

ISBN 978-0-98223375-3-0, 2009.

■ Légaré Christian. μC/TCP-IP The Embedded Protocol Stack. Micriμm Press, 2011.
94

Appendix H
95

Index

A
application module ..10
assembler options ...59

B
bind() ..49
BSD sockets ..48–49

C
C compiler options ..60
close() ...49
command line

initializing ...76, 91
using ..79

compile
RS-232 files ...28
TCP/IP files ..31, 34
μC/CPU files ..25
μC/LIB files ..26

configuration settings ..14–15
configuration template ..14
cpu.h ..26

D
data flow

μC/Probe ...6
μC/Probe-Target ...11

DCC over JTAG ...10
downloading code ...70, 89

E
ELF file ...7, 22

building ..22

G
generic communication interfaces15
generic communications module20
generic module ..30, 32, 35

I
IAR EWARM .. 59

assembler debug information 59
C compiler debug information 60
linker debug information .. 61

including code
in any project .. 73
in embedded target .. 72, 90
in your μC/OS-II project ... 72
in your μC/OS-III project .. 73, 90

including μC/Trace supporting code in your target 83
initializing

command line ... 76, 91
tracing interfaces .. 76, 91
μC/Probe-Target .. 20

interrupts ... 20

J
JTAG .. 10

K
Keil μVision .. 61

debug information .. 61

L
lib_ascii.h ... 27
lib_def.h ... 27
lib_math.h .. 27
lib_mem.h .. 27
lib_str.h .. 27
linker options ... 61

N
net.h ... 48

P
porting

RS-232 .. 38
TCP/IP ... 48

prerequisites, terminal window control 70
probe_com_cfg.h ...14–15, 17–19
96

PROBE_COM_CFG_STAT_EN ..16
PROBE_COM_CFG_STR_IN_BUF_SIZE16
PROBE_COM_CFG_STR_OUT_BUF_SIZE16
PROBE_COM_CFG_STR_REQ_EN16
PROBE_COM_CFG_TERMINAL_REQ_EN16
PROBE_COM_CFG_WR_REQ_EN16
ProbeCom_StrRd() ...51
ProbeCom_StrWr() ...52
ProbeCom_TerminalExecComplete()54
ProbeCom_TerminalExecSet() ..55
ProbeCom_TerminalInSet() ...56
ProbeCom_TerminalOut() ..53
probe_rs232c.c ..47
PROBE_RS232_CFG_COMM_SEL17
PROBE_RS232_CFG_PARSE_TASK_EN17
ProbeRS232_InitTarget() ...40
ProbeRS232_Rx/Tx/RxTxISRHandler()46
ProbeRS232_RxIntDis() ...41
ProbeRS232_RxIntEn() ..42
ProbeRS232_RxISRHandler() ..46
ProbeRS232_RxTxISRHandler()46–47
ProbeRS232_Tx1() ...45
ProbeRS232_TxIntDis() ...43
ProbeRS232_TxIntEn() ..44
ProbeRS232_TxISRHandler() ..46
probe_tcpip.c ...48–49
probe_tcpip.h ...48
PROBE_TCPIP_CFG_PORT ..18
ProbeTCPIP_RxPkt() ...49
ProbeTCPIP_ServerInit() ..48–49
ProbeTCPIP_TxStart() ...49

R
recvfrom() ...49
Renesas e2Studio ..62

C compiler debug information62
RS-232 10, 12, 14–15, 17, 20, 28–30, 38, 40–46

communication module ..20
communication module port functions39
communication settings ...17
configuration settings ...17
driver ..29
files ..28
module ...30
porting ...38

S
sendto() ..49
socket() ...49
support files ...23–24

T
target communication module ..10
TCP/IP 10, 12–15, 18–20, 31–32, 34

communication module ... 20–21
communication settings ... 18–19
configuration settings .. 18–19
files .. 31, 34
module .. 33, 36
porting ... 48

terminal window control68–79, 89–91
prerequisites ... 70

trace triggers control .. 80–82
trace triggers functional description 85
tracing function ... 77
tracing interfaces

initializing .. 76, 91
tracing message icon tags ... 78

U
USB .. 33

Z
μC/CPU .. 24–26

files .. 25
module .. 26

μC/LIB .. 24, 26–27
files .. 26
module .. 27

μC/Probe ... 6–7
μC/Probe data flow ... 6
μC/Probe-Target ... 10–11

configuration template ... 14
data flow ... 11
initializing .. 20

μC/Probe-Target C Files ... 28
μC/TCP-IP ... 48
μC/Trace triggers control ... 80–87
μC/Trace triggers functional description 85
97

	Table of Contents
	Introduction
	µC/Probe-Target Modules
	Configuring µC/Probe-Target
	3-1 Configuration Settings
	3-1-1 General Configuration Settings
	3-1-2 RS-232 Configuration Settings
	3-1-3 TCP/IP Configuration Settings
	3-1-4 USB Configuration Settings

	Initializing µC/Probe-Target
	Building µC/Probe-Target
	5-1 Micrium’s Support Files
	5-1-1 µC/CPU
	5-1-2 µC/LIB

	5-2 µC/Probe-Target C Files
	5-2-1 RS-232 interface
	5-2-2 TCP/IP Interface
	5-2-3 USB Interface

	Porting µC/Probe-Target
	A-1 Porting the RS-232 Communication Module
	A-1-1 ProbeRS232_InitTarget()
	A-1-2 ProbeRS232_RxIntDis()
	A-1-3 ProbeRS232_RxIntEn()
	A-1-4 ProbeRS232_TxIntDis()
	A-1-5 ProbeRS232_TxIntEn()
	A-1-6 ProbeRS232_Tx1()
	A-1-7 ProbeRS232_Rx/Tx/RxTxISRHandler()

	A-2 Porting the TCP/IP Communication Module

	µC/Probe-Target API Functions & Macro’s
	B-1 ProbeCom_StrRd()
	B-2 ProbeCom_StrWr()
	B-3 ProbeCom_TerminalOut()
	B-4 ProbeCom_TerminalExecComplete()
	B-5 ProbeCom_TerminalExecSet()
	B-6 ProbeCom_TerminalInSet()

	ELF Files with DWARF Debug Information
	C-1 IAR EWARM
	C-1-1 Assembler Options
	C-1-2 C Compiler Options
	C-1-3 Linker Options

	C-2 KEIL µVision 4
	C-3 Renesas e2Studio

	XML-based Custom Symbol Files (CSF)
	Terminal Window Control
	E-1 Prerequisites
	E-2 Downloading the Necessary Code for your Embedded Target
	E-3 Including the Code in your Embedded Target Project
	E-3-1 Including the Code in your µC/OS-II Embedded Target Project
	E-3-2 Including the Code in your µC/OS-III Embedded Target Project
	E-3-3 Including the Code in any Embedded Target Project

	E-4 Configuring the Code in your Embedded Target Project
	E-5 Initializing the Command Line and Tracing Interfaces
	E-6 Using the Tracing Function
	E-7 Using the Tracing Message Icon Tags
	E-8 Using the Command Line Interface

	µC/Trace Triggers Control
	F-1 Including the µC/Trace supporting code in your target
	F-2 µC/Trace Triggers Functional Description

	Oscilloscope Control
	G-1 Downloading the Necessary Code for your Embedded Target
	G-2 Including the Code in your Embedded Target Project
	G-3 Configuring the Code in your Embedded Target Project
	G-4 Initializing the Oscilloscope control
	G-5 Data Acquisition

	Bibliography
	Index

