
Font Converter

User’s Manual
V3.18

μC/ SSLTM

Secure Sockets Layer
μC/GUITM

Embedded Graphical User Interface

Micriμm

1290 Weston Road, Suite 306

Weston, FL 33326

USA

www.Micrium.com

Designations used by companies to distinguish their products are often claimed as

trademarks. In all instances where Micriμm Press is aware of a trademark claim, the product

name appears in initial capital letters, in all capital letters, or in accordance with the

vendor’s capatilization preference. Readers should contact the appropriate companies for

more complete information on trademarks and trademark registrations. All trademarks and

registerd trademarks in this book are the property of their respective holders.

Copyright © 2011 by Micriμm except where noted otherwise. All rights reserved. Printed in

the United States of America. No part of this publication may be reproduced or distributed

in any form or by any means, or stored in a database or retrieval system, without the prior

written permission of the publisher; with the exception that the program listings may be

entered, stored, and executed in a computer system, but they may not be reproduced for

publication.

The programs and code examples in this book are presented for instructional value. The

programs and examples have been carefully tested, but are not guaranteed to any particular

purpose. The publisher does not offer any warranties and does not guarantee the accuracy,

adequacy, or completeness of any information herein and is not responsible for any errors

and ommissions. The publisher assumes no liability for damages resulting from the use of

the information in this book or for any infringement of the intellectual property rights of

third parties that would result from the use of this information.

600-uC-FontConverter-002

http://www.micrium.com

3

USER’S MANUAL VERSIONS

This manual describes the latest software version. If any error occurs, please inform us and

we will try to assist you as soon as possible.

For further information on topics or routines not yet specified, please contact us.

SW version /

manual revision
Date By Description

3.18/00 110527 AS a) New functions to change the font height
added.

3.16/00 110106 AS a) Merging of font files added.
b) Micrium Logo replaced with the new one.

3.14/01 100813 AS a) Table of command line options reworked.

3.14/00

100104 JE

a) Extended antialiased formats added.
b) ’Pixel’ and ’Point’ option added to font
options dialog.
c) Antialiasing options added.
d) New command line option ’edit’ added.

3.10/03 090610 AS a) Redesigned manual.

3.10/02 081118 JE a) Company name changed.

3.10/01 071112 JE a) Font size explanation added.

3.10/00 070606 JE a) Framed fonts added.

3.08/00 060215 JE a) Logging of commands added.

3.06/00 060201 JE a) XBF format added.

3.04/00 051221 JE a) New font type added.

3.02/01 050408 JE a) Magnification options added.

3.00/01 050117 JE a) Compatibility options added.
b) Opening ’C’ files added.

2.18/01 030716 JE a) System independent fonts added.

2.16/02 030409 JE a) UConvert removed.

4

2.16/01 020812 JE a) Version number incremented.

2.14/02 020109 JE a) Chapter 2.4 changed to 3.

2.14/01 011213 JE a) 2bpp antialiasing mode added

2.12/01

010402 JE

a) Explanation of antialiasing modes added.
b) Description of encoding modes inserted.
c) Shift JIS support of FontCvt explained.
d) UConvert: Shift JIS and commandline inter-
face.

2.10/01 010104 JE a) NT & 9x versions merged

2.02/02 010103 JE a) Renamed: FontCvt -> FontConvert
b) Small changes

2.02/01 001213 JE a) Complete revised
b) Version control table added

SW version /

manual revision
Date By Description

5

Table of Contents

0-1 User’s Manual Versions ... 3

Chapter 1 Introduction .. 1

Chapter 2 Using μC/FontConverter .. 2
2-1 Creating a μC/GUI font file from a Windows font 2
2-2 Font generation options dialog ... 5
2-2-1 Type of font to generate .. 5
2-2-2 Encoding .. 6
2-2-3 Antialiasing ... 7
2-3 Font Dialog ... 8
2-3-1 Font, Font Style, and Size .. 8
2-3-2 Script .. 8
2-3-3 Unit of Size ... 9
2-4 User Interface ... 9
2-4-1 Selecting the current character ... 9
2-4-2 Toggling character status .. 10
2-4-3 Selecting pixels .. 10
2-4-4 Modifying character bits .. 10
2-4-5 Operations .. 11
2-4-6 Modifying the view mode .. 12
2-5 Options ... 13
2-6 Saving the font ... 15
2-6-1 Creating a C file .. 15
2-6-2 Creating a System Independent Font (SIF) ... 16
2-6-3 Creating an External Binary Font (XBF) .. 16
2-7 Modifying an existing C font file .. 16
2-8 Merging fonts with existing C font files .. 18

6

Chapter 3 Pattern files .. 20
3-1 Creating pattern files using Notepad .. 20
3-2 Creating pattern files using Font ConvertER 21
3-3 Enabling characters using a pattern file ... 21

Chapter 4 Supported output modes .. 22
4-1 Standard mode .. 23
4-2 Antialiased modes ... 23

Chapter 5 Command line options ... 24
5-1 Table of commands ... 25
5-2 Examples .. 26

Chapter 6 Examples .. 27
6-1 Resulting C code, standard mode .. 27
6-2 Resulting C code, 2 bpp antialiased mode ... 29
6-3 Resulting C code, 4 bpp antialiased mode ... 31
6-4 Resulting C code, extended mode .. 33

Appendix A μC/FontConverter Licensing Policy .. 35

1

Chapter

1
Introduction

Fonts which can be used with μC/GUI should be defined either as GUI_FONT structures in

C or should exist as system independent font data. If using C files the structures - or rather

the font data which is referenced by these structures - can be rather large. It is very time-

consuming and inefficient to generate these fonts manually. We therefore recommend using

FontConvert, which automatically generates C files from fonts.

The font converter is a Windows program which is easy to use. Simply load an installed

Windows font which is based on TrueType Outlines into the program, edit it if you want or

have to, and save it. The C file may then be compiled, allowing the font to be shown on

your display with μC/GUI on demand.

The following is a sample screen shot of the font converter with a font loaded in normal

(standard) mode:

14

Chapter

4
Using μC/FontConverter

The font converter can create an μC/GUI font file from an installed Windows font or it can

be used to edit the font data of a existing C font file.

4-1 CREATING A μC/GUI FONT FILE FROM A WINDOWS FONT

The basic procecure for using μC/FontConverter for creating a μC/GUI font file from an

installed Windows font is illustred below. The steps are explained in details in the section

that follows.

Step 1 Screenshot

Start the application.
The font converter is opened
and automatically displays the
Font generation options dialog
box.

The same dialog box appears if
File/New is chosen from the
font converter menu at any
point.

15

Creating a μC/GUI font file from a Windows font

Step 2 Screenshot

Specify font generation
options.

In this example, a font is to be
generated in extended mode
and with 16-bit Unicode
 encoding. The antialiasing
option is irrelevant here since
an antialiased mode was not
selected.

 Click OK.

Step 3 Screenshot

Specify font options.

In this example, a regular
style, 16 pixel Arial font is
chosen.

Click OK.

16

Creating a μC/GUI font file from a Windows font

Step 4 Screenshot

Edit the font as necessary.

See section "User Interface" for
more information on working
with the font converter user
interface.

Step 5 Screenshot

Save the µC/GUI font file and
choose File/Save As.

Select the desired format of
the font data file, C file, system
independent font or external
bitmap font.

Select a destination and a
name for the font file and click
Save.

The font converter will create a
separate file in the specified
destination, containing the cur-
rently loaded font data.

17

Font generation options dialog

4-2 FONT GENERATION OPTIONS DIALOG

After starting the program or when

choosing the menu point File/New,

the following dialog automatically

occurs:

The selections made here will

determine the output mode of the

generated font, how it is to be

encoded, and how it will be

antialiased (if an antialiased output

mode is selected).

4-2-1 TYPE OF FONT TO GENERATE

STANDARD

Creates a 1 bit per pixel font without antialiasing.

ANTIALIASED, 2BPP

Creates an antialiased font using 2 bits per pixel.

ANTIALIASED, 4BPP

Creates an antialiased font using 4 bits per pixel.

18

Font generation options dialog

EXTENDED

Creates a non antialiased 1 bit per pixel font with extended character information. This

type of font is required for applications which need support for compound characters

like used in Thai language.

EXTENDED, FRAMED

Creates a non antialiased 1 bit per pixel font with extended character information with

a surrounding frame. A framed font is always drawn in transparent mode regardless of

the current settings. The character pixels are drawn in the currently selected foreground

color and the frame is drawn in background color. For more details please refer to the

μC/GUI user manual.

EXTENDED, ANTIALIASED, 2BPP

Creates an antialiased 2 bit per pixel font with extended character information. Each

character has the same height and its own width. The pixel information is saved with

2bpp antialiasing information and covers only the areas of the glyph bitmaps.

EXTENDED, ANTIALIASED, 4BPP

Creates an antialiased 4 bit per pixel font with extended character information. Each

character has the same height and its own width. The pixel information is saved with

4bpp antialiasing information and covers only the areas of the glyph bitmaps.

4-2-2 ENCODING

16 BIT UNICODE

With Unicode encoding, you have access to all characters of a font. Windows font files

contain a maximum of 65536 characters. All character codes of the C file are the same

as those in the Windows font file.

8 BIT ASCII + ISO 8859

This encoding mode includes the ASCII codes (0x20 - 0x7F) and the ISO 8859

characters (0xA0 - 0xFF).

19

Font generation options dialog

8/16 BIT SHIFT JIS

Shift JIS (Japanese Industry Standard) enables mapping from Unicode to Shift JIS in

accordance with the Unicode standard 2. For example, the Katakana letter “KU” is

shifted from its Unicode value of 0x30AF to the Shift JIS value of 0x834E, the Kanji

character 0x786F is shifted to 0x8CA5 and so on.

4-2-3 ANTIALIASING

You can choose between two ways of antialiasing. This choice only applies when an

antialiased font type has been selected.

USING OS

The operating system is used to do the antialiasing. The resulting characters appear

exactly the same as in any other windows application where antialiased characters

are displayed.

INTERNAL

The internal antialiasing routines of the font converter are used to do the antialiasing.

The resulting characters are more exact with regard to proportions.

20

Font Dialog

4-3 FONT DIALOG

After clicking OK in the Font generation options dialog box, a second dialog is displayed as

follows:

This is where the font to be converted into a C file is selected. Be sure that you do not

violate any copyright laws by converting a font with the font converter.

4-3-1 FONT, FONT STYLE, AND SIZE

These menus are used to select the particular font to be converted. The size of the font

is specified in pixels.

4-3-2 SCRIPT

The Script box is used to select the character set which should be mapped down from

Unicode into the first 256 characters in accordance with ISO 8859. It only applies when

using the 8 Bit ASCII + ISO 8859 encoding mode.

21

User Interface

4-3-3 UNIT OF SIZE

This option button can be used to set ’Points’ or ’Pixels’ as measuring unit. Please note

that μC/GUI does not know something about the unit ’Points’ whereas most of other PC

applications use the point size for specifying the font size. The font converter uses the

operating system for getting the desired font resource. Please note that the font mapper

of the operating system is not able to create each font in each desired pixel height. In

these cases the font mapper of the operating system creates the nearest possible pixel

height. This is not a bug of the font converter.

4-4 USER INTERFACE

After clicking OK in the Font dialog box, the main user interface of the font converter

appears, loaded with the previously selected font. You may convert the font into a C file

immediately if you wish or edit its appearance first.

The font converter is divided into two areas. In the upper area, all font characters appear

scaled 1:1 as they will be displayed on your target device. Disabled characters are shown

with a gray background. Per default all character codes which are not included in the

chosen font are disabled. For example, many fonts do not include character codes from

0x00 to 0x1F and 0x7F to 0x9F, so these codes are grayed.

The current character is displayed in a magnified scale on the left side of the lower area.

Additional information about the font and the current character can be seen on the right

side. If you want to modify the character data, you must first activate the lower area, either

by pressing the <TAB> key or by simply clicking in the area.

4-4-1 SELECTING THE CURRENT CHARACTER

Characters may be selected:
■ by using the keys <UP>, <DOWN>, <LEFT>, <RIGHT>, <PGUP>,

<PGDOWN>, <POS1>, or <END>;

■ by using the scroll bars; or

■ by clicking a character with the left mouse button.

22

User Interface

4-4-2 TOGGLING CHARACTER STATUS

Use the right mouse button to toggle the status of a specific

character or to enable/disable an entire row of characters.

The menu point Edit/Toggle activation as well as the

<SPACE> key will toggle the status of the current character.

If you need to change the

status of a particular range of

characters, choose Edit/Enable

range of characters or

Edit/Disable range of

characters from the menu. The

range to be enabled or

disabled is then specified in a

dialog box using hexadecimal character values. To disable all characters, select

Edit/Disable all characters from the menu.

4-4-3 SELECTING PIXELS

When the lower area of the user interface is activated, you can move through the pixels

with the cursor, either by using the <UP>, <DOWN>, <LEFT> and <RIGHT> keys or

by clicking on the pixels with the left mouse button.

4-4-4 MODIFYING CHARACTER BITS

In the lower area you can use the <SPACE> key to invert

the currently selected bit. In antialiased mode, you can

increase and decrease the intensity of a pixel with the

keys <+> and <->.

The status bar displays the intensity of the current pixel

as follows

23

User Interface

4-4-5 OPERATIONS

SIZE OPERATIONS

The size of a character (the font) may be modified by selecting Edit/Insert/Right, Left,

Top, Bottom or Edit/Delete/Right, Left, Top, Bottom from the menu, or by using the

toolbar:

Add one pixel to the right.

Add one pixel to the left.

Add one pixel at the top

Add one pixel at the bottom

Delete one pixel from the right.

Delete one pixel from the left

Delete one pixel at the top

Delete one pixel at the bottom

SHIFT OPERATIONS

Choose Edit/Shift/Right, Left, Up, Down from the menu to shift the bits of the current

character in the respective direction, or use the toolbar:

Shift all pixels right.

Shift all pixels left.

Shift all pixels up.

Shift all pixels down.

24

User Interface

MOVE OPERATIONS (EXTENDED FONT FORMAT ONLY)

Choose Edit/Move/Right, Left, Up, Down from the menu to move the character position

in the respective direction, or use the toolbar:

Move image to the right.

Move image to the left.

Move image up.

Move image down.

CHANGE CURSOR DISTANCE (EXTENDED FONT FORMAT ONLY)

Choose Edit/Cursor distance/Increase, Decrease from the menu to move the character

position in the respective direction, or use the toolbar:

Increase cursor distance.

Decrease cursor distance.

4-4-6 MODIFYING THE VIEW MODE

The view mode may be changed by selecting the following options from the menu:

VIEW/ALL CHARACTERS

If enabled (standard), all characters are shown. If disabled, only the rows with at least

one enabled character are shown.

Toggles viewing mode.

25

Options

4-5 OPTIONS

COMPATIBILITY OPTIONS

The font converter is able to create font files for all versions of μC/GUI. Because there

have been a few small changes of the font format from the μC/GUI version 3.50 to the

version 3.52, the C font files for these versions should be slightly different to avoid

compiler warnings or compiler errors.

Use the command Options/Compatibility to get into the following dialog:

After choosing the desired μC/GUI version the OK button should be pressed.

MAGNIFICATION OPTIONS

The font converter is able to save the font data in a magnified format.

Use the command Options/Magnification to get into the following dialog:

26

Options

A magnification factor for the X and the Y axis can be specified here. If for example the

magnification factor for the Y axis is 2 and the height of the current font data is 18, the

font height in the font file will be 36. The magnification in X works similar. After saving

the font in a magnified format a short message is shown to inform the user, that the

saved font is magnified:

LOGGING

Logging of commands can be enabled or disabled using the command

Options/Logging:

When logging is enabled the C files contain a history of the commands which has been

used to modify the font file.

27

Saving the font

ANTIALIASING

When using ’Internal antialiasing’ it is recommended to enable Suppress optimization.

This makes sure, that the horizontal and vertical alignment of the characters fits to each

other.

The option Enable gamma correction for AA2 and AA4 should be disabled. When the

option is enabled the antialiased pixels of the characters will appear a little more darker.

4-6 SAVING THE FONT

The font converter can create C font files or system independent font data files. For details

about the SIF format please refer to the μC/GUI documentation.

4-6-1 CREATING A C FILE

When you are ready to generate a C file, simply select File/Save As from the font

converter menu, specify a destination and name for the file, choose the C file format

and click Save. A C file will automatically be created.

The default setting for the filename is built by the name of the source font and the

current height in pixels. For example, if the name of the source font is "Example" and

the pixel height is 10, the default filename would be Example10.c. If you keep this

default name when generating a C file, the resulting name of the font will be

GUI_FontExample10.c. Please see Chapter 6 for examples of C files generated from

fonts.

28

Modifying an existing C font file

4-6-2 CREATING A SYSTEM INDEPENDENT FONT (SIF)

When you are ready to generate the file, simply select File/Save As from the font

converter menu, specify a destination and name for the file, choose the System

independent font format and click Save. A system independent font file will

automatically be created.

This file does not contain C structures which can be compiled with μC/GUI but binary

font data, which can be used as described in the current μC/GUI documentation.

4-6-3 CREATING AN EXTERNAL BINARY FONT (XBF)

When you are ready to generate the file, simply select File/Save As from the font

converter menu, specify a destination and name for the file, choose the External

binary font format and click Save. An external binary font file will automatically be

created.

This file does not contain C structures which can be compiled with μC/GUI but binary

font data, which can be used as described in the current μC/GUI documentation.

4-7 MODIFYING AN EXISTING C FONT FILE

The font converter is able to open existing font files and to modify their font data. The tool

can only open C font files generated by the font converter. If the C font files have been

modified manually, it can not be guaranteed, that they can be opened by the font converter.

29

Modifying an existing C font file

Step 1 Screenshot

Start the application.

The font converter is opened
and automatically displays the
Font generation options dialog
box.

Press Cancel.

Step 2 Screenshot

Use the command File\Load C
file.

Select the desired C font file to
be opened and click OK.

30

Merging fonts with existing C font files

4-8 MERGING FONTS WITH EXISTING C FONT FILES

The Font Converter is able to add the content of an existing C font file to the current font

data. Once a font is loaded via “File” -> “Load ’C’ file...” or created by “File” -> “New” a C

font file can be merged to it using “File” -> “Merge ’C’ file...”. The Font Converer requires the

fonts to be of the same size, so the merging can be processed properly.

Step 1 Screenshot

Load an existing font or create
a new one as described above.

In this example the existing
font contains the characters A-
F (0x41 - 0x46).

31

Merging fonts with existing C font files

Step 2 Screenshot

Use the command File\Merge
C file....

Select the desired C font file to
be merged and click OK.

Step 3 Screenshot

The merged font file contains
the characters a-f (0x61 -
0x66).

Now the font can be edited and
saved as a new font file.

2

Chapter

3
Pattern files

If you need to create fonts with a special set of characters (often for displaying a specific

text), it can be very time consuming to enable every character by hand. In these cases,

pattern files can be used to enable your character codes.

A pattern file is nothing but a simple text file which contains the characters to be included

in the font file. It can be used by FontConvert to enable only the characters you need.

3-1 CREATING PATTERN FILES USING NOTEPAD

One option for creating a pattern file is to use Notepad, part of the WindowsNT

accessories:

■ Copy the text you want to display into the clipboard.

■ Open Notepad.exe.

■ Insert the contents of the clipboard into the Notepad document.

■ Use Format/Font to choose a font which contains all characters of the text. You can

skip this step if you do not want to see the characters.

■ Use File/Save As to save the pattern file. It is very important that you save the file in

text format:

3

Creating pattern files using Font ConvertER

3-2 CREATING PATTERN FILES USING FONT CONVERTER

A pattern file may also be created directly in FontConvert. Select Edit/Save pattern file from

the menu to create a text file which includes all currently enabled characters.

3-3 ENABLING CHARACTERS USING A PATTERN FILE

It is usually helpful to begin by disabling all characters. Select Edit/Disable all characters

from the menu if you need to do so.

Now choose Edit/Read pattern file. After opening the appropriate pattern file, all characters

included in the file are enabled. If the pattern file contains characters which are not

included in the currently loaded font, a message box will appear.

19

Chapter

5
Supported output modes

There are three modes supported by FontConvert: standard, 2-bit antialiased and 4-bit

antialiased. If you are using a black and white LCD display, only the standard mode makes

sense. If using a grayscale or color display, it is possible to improve the appearance of a font

through antialiasing.

Antialiasing smoothes curves and diagonal lines by blending the background color with that

of the foreground. The higher the number of shades used between background and

foreground colors, the better the antialiasing result. The general purpose of using

antialiased fonts is to improve the appearance of text. While the effect of using high-quality

antialiasing will be more visually pleasing than low-quality, computation time and memory

consumption will increase proportionally. Low-quality (2bpp) fonts require twice the

memory of nonantialiased (1bpp) fonts; high-quality (4bpp) fonts require four times the

memory.

20

Standard mode

 The following table shows the difference between the modes by displaying the magnified

character C in each:

5-1 STANDARD MODE

When using this mode, a pixel can either be set or not. The memory requirement for one

pixel is one bit. If a pixel is set, it is displayed in the current foreground color.

5-2 ANTIALIASED MODES

These modes are recommended if you want to display characters with smoothed edges.

Every pixel is stored as a 2- or 4-bit value which describes the foreground intensity. For

example, when using 4-bit antialiasing, a value of 15 displays the pixel in the current

foreground color. An intensity of 10 means that the pixel color is a mixture of 10 shares of

foreground color and 5 shares of background color.

Before using one of these modes, the feature must be activated in your operating system.

Choose the effects sheet of the display properties dialog and activate Smooth edges of

screen fonts.

Font Type Black On White White On Black

Standard
(no antialiasing)
1 bpp
2 shades

Low-quality
(antialiased)
2 bpp
4 shades

High-quality
(antialiased)
4 bpp
16 shades

19

Chapter

5
Command line options

20

Table of commands

5-1 TABLE OF COMMANDS

The following table shows the available command line options:

Command Description

create<FONT-
NAME>,<STYLE>,
<HEIGHT>,<TYPE>,
<ENCODING>[,<METHOD>]

Create font:
<FONTNAME> Name of the font to be used

<STYLE>
REGULAR - Creates a normal font
BOLD - Creates a bold font

<HEIGHT> Height in pixels of the font to be cre-
ated
<TYPE>
STD - Standard 1 bpp font
AA2 - Antialiased font (2bpp)
AA4 - Antialiased font (4bpp)
EXT - Extended font

<ENCODING>
UC16 - 16 bit Unicode encoding
ISO8859 - 8 bit ASCII + ISO8859
JIS - Shift JIS
<METHOD>
OS - Antialiasing of operating system
(default)
INTERNAL - Internal antialiasing method

edit<ACTION>,
<DETAIL>[,<CNT>]

Equivalent to the ’Edit’ menu:
<ACTION>
DEL - Deletes pixels
INS - Inserts pixels
<DETAIL>
TOP - Delete/insert from top
BOTTOM - Delete/insert from bottom
<CNT>
Number of operations, default is 1

enable[FIRST-LAST>,
<STATE>

Enables or disables the given range of characters:
<FIRST-LAST> Hexadecimal values separated by a ’-’
 defining the range of characters
<STATE>
1 - Enables the given range
0 - Disables the given range

Table 5.1:

21

Examples

■ All commands are processed from left to right.

■ If using -exit Font Converter will stop execution if any error occurs. The return code in

this case is != 0.

5-2 EXAMPLES

Creates an extended bold font of 32 pixels height with Unicode encoding using the font

“Cordia New”:

FontCvt -create"Cordia New",BOLD,32,EXT,UC16

Reads the C font file “FontFile.c”, disables all characters and reads a pattern file:

FontCvt FontFile.c -enable0-ffff,0 –readpattern"data.txt"

exit
Exits the application after the job is done

merge<FILENAME>
Merges the given ’C’ file to the current content.

readpattern<FILENAME>
Reads a pattern file:
<FILENAME> Name of the pattern file to be read

saveas<FILE-
NAME>,<TYPE>

Saves the font data as ’C’ file or ’SIF’ font
file:
<FILENAME> File name including extension
<TYPE>
C - Saves as ’C’ file
SIF - Saves as System independent font file

?
Shows all available commands

Command Description

Table 5.1:

4

Chapter

6
Examples

These sections provide examples of C files generated by the font converter in standard,

2bpp antialiased and 4bpp antialiased modes, respectively.

6-1 RESULTING C CODE, STANDARD MODE

The following is an example of a C file in standard mode:

/*
 C-file generated by Font converter for emWin version 3.04
 Compiled: Dec 13 2005 at 12:51:50
 C-file created: Dec 21 2005 at 12:42:57

 Copyright (C) 1998-2005
 Segger Microcontroller Systeme GmbH
 www.segger.com

 Solutions for real time microcontroller applications

 Source file: Sample10.c
 Font: Arial
 Height: 10
*/

#include "GUI.H"
#ifndef GUI_CONST_STORAGE
 #define GUI_CONST_STORAGE const
#endif

/* The following line needs to be included in any file selecting the
 font. A good place would be GUIConf.H
*/

extern GUI_CONST_STORAGE GUI_FONT GUI_FontSample10;

/* Start of unicode area <Basic Latin> */

GUI_CONST_STORAGE unsigned char acFontSample10_0041[10] = { /* code
0041 */

5

Resulting C code, standard mode

 ________,
 ___X____,
 __X_X___,
 __X_X___,
 __X_X___,
 _X___X__,
 _XXXXX__,
 X_____X_,
 X_____X_,
 ________};

GUI_CONST_STORAGE unsigned char acFontSample10_0061[10] = { /* code
0061 */

 ________,
 ________,
 ________,
 _XXX____,
 X___X___,
 _XXXX___,
 X___X___,
 X__XX___,
 _XX_X___,
 ________};

GUI_CONST_STORAGE GUI_CHARINFO GUI_FontSample10_CharInfo[2] = {
 { 8, 8, 1, acFontSample10_0041 } /* code 0041 */
 ,{ 6, 6, 1, acFontSample10_0061 } /* code 0061 */
};

GUI_CONST_STORAGE GUI_FONT_PROP GUI_FontSample10_Prop2 = {
 97 /* first character */
 ,97 /* last character */
 ,&GUI_FontSample10_CharInfo[1] /* address of first character */
 ,(GUI_CONST_STORAGE GUI_FONT_PROP*)0 /* pointer to next
GUI_FONT_PROP */
};

GUI_CONST_STORAGE GUI_FONT_PROP GUI_FontSample10_Prop1 = {
 65 /* first character */
 ,65 /* last character */
 ,&GUI_FontSample10_CharInfo[0] /* address of first character */
 ,&GUI_FontSample10_Prop2 /* pointer to next GUI_FONT_PROP */
};

6

Resulting C code, 2 bpp antialiased mode

GUI_CONST_STORAGE GUI_FONT GUI_FontSample10 = {
 GUI_FONTTYPE_PROP /* type of font */
 ,10 /* height of font */
 ,10 /* space of font y */
 ,1 /* magnification x */
 ,1 /* magnification y */
 ,&GUI_FontSample10_Prop1
};

6-2 RESULTING C CODE, 2 BPP ANTIALIASED MODE

The following is an example of a C file in 2 bpp antialiased mode:

/*
 C-file generated by Font converter for emWin version 3.04
 Compiled: Dec 13 2005 at 12:51:50
 C-file created: Dec 21 2005 at 12:42:57

 Copyright (C) 1998-2005
 Segger Microcontroller Systeme GmbH
 www.segger.com

 Solutions for real time microcontroller applications

 Source file: Sample10.c
 Font: Arial
 Height: 14
*/

#include "GUI.H"

#ifndef GUI_CONST_STORAGE
 #define GUI_CONST_STORAGE const
#endif

/* The following line needs to be included in any file selecting the
 font. A good place would be GUIConf.H
*/

extern GUI_CONST_STORAGE GUI_FONT GUI_FontSample10;

/* Start of unicode area <Basic Latin> */

7

Resulting C code, 2 bpp antialiased mode

GUI_CONST_STORAGE unsigned char acFontSample10_0041[28] = { /* code
0041 */
 0x00, 0x00,
 0x00, 0x00,
 0x00, 0x00,
 0x0B, 0xC0,
 0x1F, 0xD0,
 0x2E, 0xE0,
 0x3C, 0xF0,
 0x78, 0xB4,
 0xBF, 0xF8,
 0xE0, 0x78,
 0xE0, 0x3C,
 0x00, 0x00,
 0x00, 0x00,
 0x00, 0x00
};

GUI_CONST_STORAGE unsigned char acFontSample10_0061[28] = { /* code
0061 */
 0x00, 0x00,
 0x00, 0x00,
 0x00, 0x00,
 0x00, 0x00,
 0x00, 0x00,
 0x6F, 0x40,
 0x93, 0xC0,
 0x2B, 0xC0,
 0xB7, 0xC0,
 0xF7, 0xC0,
 0x7B, 0xC0,
 0x00, 0x00,
 0x00, 0x00,
 0x00, 0x00
};

GUI_CONST_STORAGE GUI_CHARINFO GUI_FontSample10_CharInfo[2] = {
 { 8, 8, 2, acFontSample10_0041 } /* code 0041 */
 ,{ 6, 6, 2, acFontSample10_0061 } /* code 0061 */
};

GUI_CONST_STORAGE GUI_FONT_PROP GUI_FontSample10_Prop2 = {
 0x0061 /* first character */
 ,0x0061 /* last character */
 ,&GUI_FontSample10_CharInfo[1] /* address of first character */
 ,(GUI_CONST_STORAGE GUI_FONT_PROP*)0 /* pointer to next
GUI_FONT_PROP */
};

GUI_CONST_STORAGE GUI_FONT_PROP GUI_FontSample10_Prop1 = {
 0x0041 /* first character */
 ,0x0041 /* last character */
 ,&GUI_FontSample10_CharInfo[0] /* address of first character */
 ,&GUI_FontSample10_Prop2 /* pointer to next GUI_FONT_PROP */
};

8

Resulting C code, 4 bpp antialiased mode

GUI_CONST_STORAGE GUI_FONT GUI_FontSample10 = {
 GUI_FONTTYPE_PROP_AA2 /* type of font */
 ,14 /* height of font */
 ,14 /* space of font y */
 ,1 /* magnification x */
 ,1 /* magnification y */
 ,&GUI_FontSample10_Prop1
};

6-3 RESULTING C CODE, 4 BPP ANTIALIASED MODE

The following is an example of a C file in 4 bpp antialiased mode:

/*
 C-file generated by Font converter for emWin version 3.04
 Compiled: Dec 13 2005 at 12:51:50
 C-file created: Dec 21 2005 at 12:42:57

 Copyright (C) 1998-2005
 Segger Microcontroller Systeme GmbH
 www.segger.com

 Solutions for real time microcontroller applications

 Source file: Sample10.c
 Font: Arial
 Height: 10
*/

#include "GUI.H"

#ifndef GUI_CONST_STORAGE
 #define GUI_CONST_STORAGE const
#endif

/* The following line needs to be included in any file selecting the
 font. A good place would be GUIConf.H
*/

extern GUI_CONST_STORAGE GUI_FONT GUI_FontSample10;

/* Start of unicode area <Basic Latin> */

9

Resulting C code, 4 bpp antialiased mode

GUI_CONST_STORAGE unsigned char acFontSample10_0041[40] = { /* code
0041 */
 0x00, 0x00, 0x00, 0x00,
 0x00, 0xCF, 0xF2, 0x00,
 0x03, 0xFF, 0xF6, 0x00,
 0x09, 0xFB, 0xFB, 0x00,
 0x0E, 0xE2, 0xFE, 0x00,
 0x5F, 0x90, 0xCF, 0x40,
 0xBF, 0xFF, 0xFF, 0x90,
 0xFC, 0x00, 0x6F, 0xC0,
 0xF8, 0x00, 0x2F, 0xF2,
 0x00, 0x00, 0x00, 0x00
};

GUI_CONST_STORAGE unsigned char acFontSample10_0061[30] = { /* code
0061 */
 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00,
 0x3D, 0xFE, 0x60,
 0xD3, 0x0F, 0xE0,
 0x29, 0xCF, 0xF0,
 0xDF, 0x4F, 0xF0,
 0xFF, 0x3F, 0xF0,
 0x6F, 0xAF, 0xF0,
 0x00, 0x00, 0x00
};

GUI_CONST_STORAGE GUI_CHARINFO GUI_FontSample10_CharInfo[2] = {
 { 8, 8, 4, acFontSample10_0041 } /* code 0041 */
 ,{ 6, 6, 3, acFontSample10_0061 } /* code 0061 */
};

GUI_CONST_STORAGE GUI_FONT_PROP GUI_FontSample10_Prop2 = {
 0x0061 /* first character */
 ,0x0061 /* last character */
 ,&GUI_FontSample10_CharInfo[1] /* address of first character */
 ,(GUI_CONST_STORAGE GUI_FONT_PROP*)0 /* pointer to next
GUI_FONT_PROP */
};

GUI_CONST_STORAGE GUI_FONT_PROP GUI_FontSample10_Prop1 = {
 0x0041 /* first character */
 ,0x0041 /* last character */
 ,&GUI_FontSample10_CharInfo[0] /* address of first character */
 ,&GUI_FontSample10_Prop2 /* pointer to next GUI_FONT_PROP */
};

GUI_CONST_STORAGE GUI_FONT GUI_FontSample10 = {
 GUI_FONTTYPE_PROP_AA4 /* type of font */
 ,10 /* height of font */
 ,10 /* space of font y */
 ,1 /* magnification x */
 ,1 /* magnification y */
 ,&GUI_FontSample10_Prop1
};

10

Resulting C code, extended mode

6-4 RESULTING C CODE, EXTENDED MODE

/*
 C-file generated by Font converter for emWin version 3.04
 Compiled: Dec 13 2005 at 12:51:50
 C-file created: Dec 21 2005 at 12:45:52

 Copyright (C) 1998-2005
 Segger Microcontroller Systeme GmbH
 www.segger.com

 Solutions for real time microcontroller applications

 Source file: Arial16.c
 Font: Arial
 Height: 16
*/

#include "GUI.H"

#ifndef GUI_CONST_STORAGE
 #define GUI_CONST_STORAGE const
#endif

/* The following line needs to be included in any file selecting the
 font. A good place would be GUIConf.H
*/

extern GUI_CONST_STORAGE GUI_FONT GUI_Font16;

/* Start of unicode area <Basic Latin> */

GUI_CONST_STORAGE unsigned char acGUI_Font16_0041[20] = { /* code
0041 */
 ____X___,________,
 ___X_X__,________,
 ___X_X__,________,
 ___X_X__,________,
 __X___X_,________,
 __X___X_,________,
 _XXXXXXX,________,
 _X_____X,________,
 X_______,X_______,
 X_______,X_______};

GUI_CONST_STORAGE unsigned char acGUI_Font16_0061[7] = { /* code
0061 */
 _XXX____,
 X___X___,
 ____X___,
 _XXXX___,
 X___X___,
 X__XX___,
 _XX_X___};

11

Resulting C code, extended mode

GUI_CONST_STORAGE GUI_CHARINFO_EXT GUI_Font16_CharInfo[2] = {
 { 9, 10, 0, 3, 9, acGUI_Font16_0041 } /* code 0041 */
 ,{ 5, 7, 1, 6, 7, acGUI_Font16_0061 } /* code 0061 */
};

GUI_CONST_STORAGE GUI_FONT_PROP_EXT GUI_Font16_Prop2 = {
 0x0061 /* first character */
 ,0x0061 /* last character */
 ,&GUI_Font16_CharInfo[1] /* address of first character */
 ,(GUI_CONST_STORAGE GUI_FONT_PROP_EXT *)0
};

GUI_CONST_STORAGE GUI_FONT_PROP_EXT GUI_Font16_Prop1 = {
 0x0041 /* first character */
 ,0x0041 /* last character */
 ,&GUI_Font16_CharInfo[0] /* address of first character */
 ,&GUI_Font16_Prop2 /* pointer to next GUI_FONT_PROP_EXT */
};

GUI_CONST_STORAGE GUI_FONT GUI_Font16 = {
 GUI_FONTTYPE_PROP_EXT /* type of font */
 ,16 /* height of font */
 ,16 /* space of font y */
 ,1 /* magnification x */
 ,1 /* magnification y */
 ,{&GUI_Font16_Prop1}
 ,13 /* Baseline */
 ,7 /* Height of lowercase characters */
 ,10 /* Height of capital characters */
};

12

Appendix

A
μC/FontConverter Licensing Policy

You need to obtain an “Object Code Distribution License” to embed μC/FontConverter in a

product that is sold with the intent to make a profit. Each individual product (i.e., your

product) requires its own license, but the license allows you to distribute an unlimited

number of units for the life of your product. Please indicate the processor type(s) (i.e.,

ARM7, ARM9, MCF5272, MicroBlaze, Nios II, PPC, etc.) that you intend to use.

For licensing details, contact us at:

Micrium
1290 Weston Road, Suite 306

Weston, FL 33326

USA

Phone +1 954 217 2036

FAX +1 954 217 2037

www.micrium.com

licensing@micrium.com

	User’s Manual Versions
	Table of Contents
	Introduction
	Using µC/FontConverter
	4-1 Creating a µC/GUI font file from a Windows font
	4-2 Font generation options dialog
	4-2-1 Type of font to generate
	4-2-2 Encoding
	4-2-3 Antialiasing

	4-3 Font Dialog
	4-3-1 Font, Font Style, and Size
	4-3-2 Script
	4-3-3 Unit of Size

	4-4 User Interface
	4-4-1 Selecting the current character
	4-4-2 Toggling character status
	4-4-3 Selecting pixels
	4-4-4 Modifying character bits
	4-4-5 Operations
	4-4-6 Modifying the view mode

	4-5 Options
	4-6 Saving the font
	4-6-1 Creating a C file
	4-6-2 Creating a System Independent Font (SIF)
	4-6-3 Creating an External Binary Font (XBF)

	4-7 Modifying an existing C font file
	4-8 Merging fonts with existing C font files

	Pattern files
	3-1 Creating pattern files using Notepad
	3-2 Creating pattern files using Font ConvertER
	3-3 Enabling characters using a pattern file

	Supported output modes
	5-1 Standard mode
	5-2 Antialiased modes

	Command line options
	5-1 Table of commands
	5-2 Examples

	Examples
	6-1 Resulting C code, standard mode
	6-2 Resulting C code, 2 bpp antialiased mode
	6-3 Resulting C code, 4 bpp antialiased mode
	6-4 Resulting C code, extended mode

	µC/FontConverter Licensing Policy

